Skip to main content

Callosal Mechanisms in Epileptogenesis

Identification of Two Distinct Kinds of Spread of Epileptic Activity

  • Chapter
Epilepsy and the Corpus Callosum

Abstract

This chapter will focus upon the role of the corpus callosum in secondary epileptogenesis. Secondary (2°) epileptogenesis may be defined as the sum total of that series of events by means of which an initially normal neural network, as a consequence of its chronic exposure to the activity of a primary (1°) epileptic lesion, develops epileptogenic properties of its own. This transformation of the satellite or target network involves passage through several stages of development, as will be described on pp. 17 and 18 below. The primary epileptic lesion may be produced by any of a wide variety of locally acting metals or drugs [see Purpura et al. (1972) for details] or by chronic, recurrent electrical stimulation (kindling), or may arise as a consequence of some injury, as in the naturally occurring epilepsies in man. No matter what the causative agent of the primary lesion, there is a substantial likelihood that the latter will ultimately give rise to satellite foci in distant, but synaptically related, cerebral regions. These secondary foci eventually develop all the properties of the primary focus, including that of giving rise to clinical seizures, of establishing their own secondaries (tertiary epileptogenesis) and of maintaining the newly acquired epileptogenic behavior even after removal of the orginal or 1° focus. The process therefore represents a true spread of epileptogenicity to originally uninvolved regions of the brain. It is a kind of spread, however, that must be sharply distinguished from that which occurs when a formerly quiescent focus begins to spread into surrounding normal tissue and to give rise to clinical convulsive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, C. E., Bisby, M. A., and Diamond, I., 1972, Impulses and the transfer of trophic factors in nerves, J. Physiol.(Lond.) 226:60P–61P.

    Google Scholar 

  • Albuquerque, E; X., Warnick, J. E., Tasse, J. R., and Sansone, F. M., 1972, Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat, Exp. Neurol. 37:607–634.

    CAS  Google Scholar 

  • Beaumanoir, A., Naquet, R., and Vigouroux, R., 1981, Temporal lobe epilepsy:Experimental reproduction, in:Henri Gastaut and the Marseille School’s Contribution to the Neurosciences(R. Broughton, ed.), Electroencephalogr. Clin. Neurophysiol., Suppl. 35, pp. 159–170.

    Google Scholar 

  • Bureš, J., 1957, The ontogenetic development of steady potential differences in the cerebral cortex in animals, Electroencephalogr. Clin. Neurophysiol. 9:121–130.

    Article  Google Scholar 

  • Collins, R. C., and Caston, T. V., 1979, Functional anatomy of occipital lobe seizures:An experimental study in rats, Neurology 29:705–716.

    PubMed  CAS  Google Scholar 

  • De Toledo-Morrell, L., and Morrell, F., 1980, Spontaneous epileptiform discharges and clinical seizures occur early in hippocampal kindling, Neurosci. Abstr. 6:11.

    Google Scholar 

  • Doty, R. W., 1958, Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli, J. Neurophysiol. 21:437–464.

    PubMed  CAS  Google Scholar 

  • Ebner, F. F., and Myers, R. E., 1965, Cited in R. E. Myers’ Discussion, in:Functions of the Corpus Callosum( E. G. Ettlinger, ed.), Little, Brown & Co., Boston, p. 140.

    Google Scholar 

  • Fink, B. R., and Kish, S. J., 1976, Reversible inhibition of rapid axonal transport in vivoby lidocaine hydrochloride, Anesthesiology 44:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Gastaut, H., Naquet, R., and Vigouroux, R., 1953a, Un cas d’épilepsie amygdalienne experimentale chez le chat, Electroencephalogr. Clin. Neurophysiol. 5:291–294.

    Article  CAS  Google Scholar 

  • Gastaut, H., Naquet, R., Vigoroux, R., Roger, A., and Badier, M., 1953b, Etude électrographique chez l’homme et chez l’animal des decharges epileptiques dites “psychomotrices,” Rev. Neurol. 88:310–354.

    CAS  Google Scholar 

  • Goddard, G. V., 1967, The development of epileptic seizures through brain stimulation at low intensity, Nature 214:1020.

    Article  PubMed  CAS  Google Scholar 

  • Goddard, G. V., Mclntyre, D., and Leech, C., 1969, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol. 25:295–330.

    Article  PubMed  CAS  Google Scholar 

  • Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60:1167–1283.

    PubMed  CAS  Google Scholar 

  • Gumnit, R. J., 1960, D.C. potential changes from auditory cortex of cat, J. Neurophysiol. 23:667–675.

    PubMed  CAS  Google Scholar 

  • Gumnit, R. J., and Grossman, R. G., 1961, Potentials evoked by sound in the auditory cortex of the cat, Am. J. Physiol. 200:1219–1225.

    PubMed  CAS  Google Scholar 

  • Gupta, P. C., Dharampaul, S. N., and Singh, B., 1973, Secondary epileptogenic EEG focus in temporal lobe epilepsy, Epilepsia 14:423–426.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, W. W., and Thesleff, S., 1972, Studies on the trophic influence of nerve on skeletal muscle, Eur. J. Pharmacol. 20:256–260.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (Lond.) 160:106–154.

    CAS  Google Scholar 

  • Jonec, V., Holm, S., Masuoka, D., and Wasterlain, C. G., 1977, Anisomycin delays amygdaloid kindling in rats, Neurosci. Abstr. 3:141.

    Google Scholar 

  • Kessler, E., Moneta, E., and Morrell, F., 1979, Cycloheximide suppression of kindling is not an anticonvulsant effect, Electroencephalogr. Clin. Neurophysiol. 46:12P–13P.

    Google Scholar 

  • Kusske, J. A., and Rush, J. L., 1978, Corpus callosum and propagation of afterdischarge to contralateral cortex and thalamus, Neurology 28:905–912.

    PubMed  CAS  Google Scholar 

  • Lømo, T., and Rosenthal, J., 1972, Control of ACh sensitivity by muscle activity in the rat, J. Physiol. (Lond.) 221:493–513.

    Google Scholar 

  • Mahnke, J. H., and Ward, Jr., A. A., 1961, Standing potential characteristics of the epileptogenic focus, Epilepsia 2:161–169.

    PubMed  CAS  Google Scholar 

  • Morrell, F., 1959/1960, Secondary epileptogenic lesions, Epilepsia 1:538–560.

    Google Scholar 

  • Morrell, F., 1960, Microelectrode and steady potential studies suggesting a dendritic locus of closure, in:The Moscow Colloquium on Electroencephalography of Higher Nervous Activity (H. H. Jasper and G. D. Smirnov, eds.), Electroencephalogr. Clin. Neurophysiol., Suppl. 13, pp. 65–79.

    Google Scholar 

  • Morrell, F., 1982, Biochemical alterations in secondary epileptogenic lesions, in:Secondary Epi- leptogenesis( A. Mayersdorf and R. P. Schmidt, eds.), Raven Press, New York, pp. 131–163.

    Google Scholar 

  • Morrell, F., and Naitoh, P., 1962, Effect of cortical polarization on a conditional avoidance response, Exp. Neurol. 6:507–523.

    Article  Google Scholar 

  • Morrell, F., and Tsuru, N., 1976, Kindling in the frog:Development of spontaneous epileptiform activity, Electroencephalogr. Clin. Neurophysiol. 40:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Morrell, F., and Tsuru, N., 1980, The role of axonal transport in secondary epileptogenesis, Epilepsia22:30.

    Google Scholar 

  • Morrell, F., Tsuru, N., Hoeppner, T. J., Morgan, D., and Harrison, W. H., 1975, Secondary epileptogenesis in frog forebrain:Effect of inhibition of protein synthesis, Can. J. Neurol. Sci. 2:407–16.

    PubMed  CAS  Google Scholar 

  • Morrell, F., Rasmussen, T., Gloor, P., and de Toledo-Morrell, L., 1983, Secondary epileptogenic foci in patients with verified temporal lobe tumors, Electroencephalogr. Clin. Neurophysiol.54:26 P.

    Google Scholar 

  • Periśić, M., and Cuenod, M., 1972, Synaptic transmission depressed by colchicine blockade of axoplasmic flow, Science 175:1140–1142.

    Article  PubMed  Google Scholar 

  • Purpura, D. P., Penry, J. K., Tower, D. B., Woodbury, D. M., and Walter, R. E. (eds.), 1972, Experimental Models of Epilepsy:A Manuel for the Laboratory Worker, Raven Press, New York.

    Google Scholar 

  • Robert, E. M., and Oester, Y. T., 1970, Absence of supersensitivity to acetylcholine in innervated muscle subjected to a prolonged pharmacologic nerve block, J. Pharmacol. Exp. Ther. 174:133–140.

    PubMed  CAS  Google Scholar 

  • Rose, J. E., and Woolsey, C. N., 1958, Cortical connections and functional organization of the thalmic auditory system of the cat, in:Biological and Biochemical Bases of Behavior( H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, Wisconsin, pp. 127–150.

    Google Scholar 

  • Thompson, R. F., Johnson, R. H., and Hoopes, J. J., 1963a, Organization of auditory, somatic, sensory, and visual projection to association fields of cerebral cortex in the cat, J. Neurophysiol 26:343–364.

    CAS  Google Scholar 

  • Thompson, R. F., Smith, H. E., and Bliss, D., 1963b, Auditory, somatic sensory, and visual response interactions and interrelations in association and primary cortical fields of the cat, J. Neurophysiol. 26:365–378.

    CAS  Google Scholar 

  • Ward, A. A., Jr., 1972, Topical convulsant metals, in:Experimental Models of Epilepsy:A Manual for the Laboratory Worker( D. P. Purpura, J. K. Penry, D. B. Tower, D. M. Woodbury, and R. D. Walter, eds.), Raven Press, New York, pp. 13–36.

    Google Scholar 

  • Wasterlain, C. G., 1974, Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations, Neurology 24:175–180.

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex in:Biological and Biochemical Bases of Behavior (H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, Wisconsin, pp. 63–81.

    Google Scholar 

  • Woolsey, C. N., 1961, Organization of cortical auditory system in:Sensory Communication(W. A. Rosenblith, ed.), MIT Press and Wiley, Cambridge, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Morrell, F. (1985). Callosal Mechanisms in Epileptogenesis. In: Reeves, A.G. (eds) Epilepsy and the Corpus Callosum. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2419-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2419-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9473-3

  • Online ISBN: 978-1-4613-2419-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics