Skip to main content

First-Order Phase Transition to the Metallic State in Doped Polyacetylene: Solitons at High Density

  • Chapter
Localization and Metal-Insulator Transitions

Part of the book series: Institute for Amorphous Studies Series ((IASS))

  • 363 Accesses

Abstract

The insulator-metal transition in conventional three dimensional semi-conductors is conceptually understood in the context of. the Mott transition. The localized donor or acceptor states of the dilute limit evolve into “metallic” impurity bands when the wave-function overlap is sufficient to give effective screening of the localizing electronelectron interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see S. Etemad, A.J. Heeger and A.G. MacDiarmid, Ann. Rev. Chem. Phys. 33, 443 (1982).

    Article  ADS  Google Scholar 

  2. b. Recent results are summarized in the Proceedings of the Los Alamos Workshop on Synthetic Metals; J. Synth. Metals 9, (1984).

    Google Scholar 

  3. T.-C. Chung, F. Moraes, J.D. Flood and A.J. Heeger, Phys. Rev. B 29, 2341 (1984) (and references therein).

    Article  ADS  Google Scholar 

  4. S. Ikehata, J. Kaufer, T. Woerner, A. Pron, M. Druy, A. Sivak, A.J. Heeger and A.G. MacDiarmid, Phys. Rev. Lett 45, 1123 (1980).

    Article  ADS  Google Scholar 

  5. B.R. Weinberger, J. Kaufer, A.J. Heeger, A. Pron and A.G. MacDiarmid, Phys. Rev. B 20, 223 (1979).

    Article  ADS  Google Scholar 

  6. Y.W. Park, A.J. Heeger, M.A. Druy and A.G. MacDiarmid, J. Chem. Phys. 73, 946 (1980).

    Article  ADS  Google Scholar 

  7. A.J. Epstein, H. Rommelman, M.A. Druy, A.J. Heeger and A.G. MacDiarmid, Sol. St. Commun. 38, 683 (1981).

    Article  ADS  Google Scholar 

  8. A. Fedlblum, J.H. Kaufman, S. Etemad, A.J. Heeger, T.-C. Chung and A.G. MacDiarmid, Phys. Rev. B 26, 815 (1982).

    Article  ADS  Google Scholar 

  9. A. Fedlblum, J.H. Kaufman, S. Etemad, A.J. Heeger, T.-C. Chung and A.G. MacDiarmid, Phys. Rev. B 26, 815 (1982).

    Google Scholar 

  10. L. Shacklette, private communication.

    Google Scholar 

  11. See, for example, Y. Tomkiewicz et al., Phys. Rev. Lett. 43, 1532 (1979); Phys. Rev. B 29, 4348 (1981).

    Article  ADS  Google Scholar 

  12. L.W. Shacklette, N.S. Murthy and R.H. Baughman, Proc. of ICSM 84 Abano, Italy; to be published in Mol. Cryst. and Liq. Cryst.

    Google Scholar 

  13. F. Moraes, D. Davidov, M. Kobayashi, T.-C. Chung, J. Chen, A.J. Heeger and F. Wudl, J. Synth. Metals (in press).

    Google Scholar 

  14. J.C.W. Chien, M. Schen and F. Karasz, Makro. Molec. Chemie, Rapid Commun. 5, 217 (1984).

    Article  Google Scholar 

  15. See the following and references therein:

    Google Scholar 

  16. G. Blanchet, C.R. Pincher and A.J. Heeger, Phys. Rev. Lett. 50, 1938 (1983); 51, 2132 (1983).

    Article  ADS  Google Scholar 

  17. Z. Vardeny, J. Orenstein and G.L. Baker, Phys. Rev. Lett. 50, 2032 (1983).

    Article  ADS  Google Scholar 

  18. Z. Vardeny, E. Ehrenfreund, 0. B.afman and B. Horovitz, Phys. Rev. Lett. 51, 2326 (1983).

    Article  ADS  Google Scholar 

  19. R.H. Baughman, L.W. Shacklette, N.S. Murthy, G.G. Miller and R.L. Elsenbaumer, Proc. of ICSM 84, Abano, Italy; to be published in Molec. Cryst. and Liq. Cryst.

    Google Scholar 

  20. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett; 42, 1698 (1979); Phys. Rev. B 22, 2209 (1980).

    Article  ADS  Google Scholar 

  21. M.J. Rice, Phys. Lett 71A, 152 (1979).

    ADS  Google Scholar 

  22. H. Takayama, Y.R. Lin-Liu and K. Maki, Phys. Rev. B 21, 2388 (1980).

    Article  ADS  Google Scholar 

  23. Y.R. Lin-Liu and K. Maki, Phys. Rev. B 22, 5754 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  24. M.J. Rice and J. Timonen, Phys. Lett 73A, 368 (1979).

    ADS  Google Scholar 

  25. J.P. Albert and C. Jouanin, Mol. Cryst. Liq. Cryst. 77, 297 (1981).

    Article  Google Scholar 

  26. E.J. Mele and M.J. Rice, Phys. Rev. B 23, 5397 (1981).

    Article  ADS  Google Scholar 

  27. B. Horovitz, Phys. Rev. Lett. 46, 742 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  28. S.A. Brazovskii, S. Gordyunin and N.N. Korova, Zh. Eksp. Teor. Fiz. Pis′ma Red. 31, 486 (1980); JETP Lett. 31, 456 (1980).

    ADS  Google Scholar 

  29. Equation 2 differs from that given by Lin-Liu and Make (ref 18b). The positive term, (16?/p)(d/?) exp(-d/?), arises from the increase in the inter-soliton repulsion caused by the addition of neutrals; we thank Y.R. Lin-Liu for calling our attention to this term. The negative term, -Ueff, comes from the inclusion of the short range Coulomb interaction within the Hubbard model (ref. 23).

    Google Scholar 

  30. S. Kivelson and D.E. Heim, Phys. Rev. B 26, 4378 (1982).

    Article  ADS  Google Scholar 

  31. J. Dong and J.R. Schrieffer, to be published. See also J. Dong, PhD thesis, UCSB, 1984.

    Google Scholar 

  32. A.J. Epstein, D. Hoffman and D. Tanner, Phys. Rev. Lett. 23, 1866 (1983).

    Article  ADS  Google Scholar 

  33. R. Jackiw and C. Rebbe, Phys. Rev. D 13, 3398 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Jackiw and J.R. Schrieffer, Nucl. Phys. B190, 253 (1981).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Oress, New York

About this chapter

Cite this chapter

Chen, J., Chung, TC., Moraes, F., Heeger, A.J. (1985). First-Order Phase Transition to the Metallic State in Doped Polyacetylene: Solitons at High Density. In: Fritzsche, H., Adler, D. (eds) Localization and Metal-Insulator Transitions. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2517-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2517-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9521-1

  • Online ISBN: 978-1-4613-2517-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics