Skip to main content

Plastic Flow Properties in Relation to Localized Necking in Sheets

  • Chapter
Mechanics of Sheet Metal Forming

Abstract

Considerable interest exists in understanding the levels of maximum useful strains achievable prior to localized necking (forming limits) and their dependence on the imposed stress-state. Marciniak’s model of imperfection growth has successfully explained the rise in forming limit as the imposed strain-ratio (ε21) is increased from zero (plane strain) toward unity (balanced biaxial tension). Experimental studies on formability of various materials have, however, revealed basic differences in behavior, such as the “brass-type” and the “steel type”, exhibiting respectively, zero and positive dependencies of forming limit upon the strain-ratio. Such results cannot be reconciled without proper attention to the details of strain hardening and strain-rate hardening behaviors of these materials, particularly as functions of strain and strain-ratio. A review of these properties for several materials will be presented in an attempt to show their importance on the necking behavior. Furthermore, the dependence of the patterns of behavior upon the mode of stretching (in-plane and punch stretching) is discussed. Some results of a Marci niak-type model of material imperfection are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Marciniak and K. Kuczyński, Int. J. Mech. Sci., 9 (1967), 609.

    Article  Google Scholar 

  2. S. P. Keeler and W. A. Backofen, Trans. ASM, 56 (1963), 25.

    Google Scholar 

  3. M. Azrin and W. A. Backofen, Metall. Trans., 1 (1970), 2857.

    Google Scholar 

  4. A. K. Ghosh and W. A. Backofen, Metall. Trans., 4 (1973), 1113.

    Article  CAS  Google Scholar 

  5. S. S. Hecker, J. Eng. Mater. Technol. (Trans. ASME, H), 97 (1975), 66.

    Article  CAS  Google Scholar 

  6. R. Hill, J. Mech. Phys. Solids, 1 (1952), 19.

    Article  Google Scholar 

  7. H. van Minh, R. Sowerby and J. L. Duncan, Int. J. Mech. Sci., 17 (1975), 339.

    Article  Google Scholar 

  8. Y. Yamaguchi and P. B. Mellor, Int. J. Mech. Sci., 18 (1976), 85.

    Article  Google Scholar 

  9. S. Stören and J. R. Rice, J. Mech. Phys. Solids, 23 (1975), 421.

    Article  Google Scholar 

  10. R. Hill, J. Mech. Phys. Solids, 6 (1958), 236.

    Article  Google Scholar 

  11. A. K. Ghosh and S. S. Hecker, Metall. Trans., 6A (1975), 1065.

    Google Scholar 

  12. A. K. Ghosh and S. S. Hecker, Metall. Trans., 5 (1974), 2161.

    Google Scholar 

  13. M. J. Painter and R. Pearce, J. Phys. D: Appl. Phys., 7 (1974), 992.

    Article  CAS  Google Scholar 

  14. A. K. Ghosh, Met. Trans., 8A (1977), 1221.

    Google Scholar 

  15. Z. Marciniak, K. Kuczyński and T. Pokora, Int. J. Mech. Sci., 15 (1973), 789.

    Article  Google Scholar 

  16. A. K. Ghosh, Metall. Trans., 7A (1976), 523.

    Google Scholar 

  17. S. S. Hecker, Met. Eng. Q., 14 (1974), 30.

    Google Scholar 

  18. L. E. Malvern, J. Appl. Mech. (Trans. ASME) 18 (1951), 203.

    Google Scholar 

  19. R. Pearce, Int. J. Mech. Sci., 13 (1971), 299.

    Article  Google Scholar 

  20. K. Yoshida, K. Yoshii, H. Komorida, M. Usuda and H. Watanabe, Scientific Papers, Inst, of Physical and Chemical Research, Tokyo, 64 (1970), 24.

    Google Scholar 

  21. H. J. Kleemola and A. J. Ranta-Escola, Metall. Trans., 7A, (1976), 595.

    CAS  Google Scholar 

  22. D. J. Lloyd, B. D. McLaughlin and H. Sang, Scr. Metall., 11 (1977), 297.

    Article  CAS  Google Scholar 

  23. J. L. Duncan and W. Johnson, Sheet Met. Ind., 42 (1965), 271.

    Google Scholar 

  24. A. Needleman and N. Triantafyllidis, Brown University Report NSF-ENG76-16421/1, June 1977 (to be published in J. Eng. Mater. Technol.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Ghosh, A.K. (1978). Plastic Flow Properties in Relation to Localized Necking in Sheets. In: Koistinen, D.P., Wang, NM. (eds) Mechanics of Sheet Metal Forming. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2880-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2880-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2882-7

  • Online ISBN: 978-1-4613-2880-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics