Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 54))

Abstract

Since its formulation in 1974, the MIT bag model in various versions has acquired a considerable following. It is neither possible nor desirable for me to attempt to review all of the bag related developments of the past five years. A few works of a review nature exist. These are listed in Ref. 1–4. I shall give a brief introduction to the model in the static cavity approximation, since this approach has been the starting point for many applications. Following this is a discussion of deformations of the bag, applied to a calculation of the electric polarizability of the π meson, and applied to rotationally excited states. Some recent results regarding hadronic interactions are reviewed, in particular, for low energy nucleon-nucleon interactions and for meson-meson interactions. Finally, I shall discuss some recent efforts at treating low energy pion interactions in the bag model using PCAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. K. Johnson, Acta Phys. Polonica B6, 865 (1975).

    Google Scholar 

  2. K. Johnson, Proc. of the Seventeenth Scottish Universities Summer School in Physics, St. Andrews (1976), ed. by I. M. Barbour and A.T. Davis.

    Google Scholar 

  3. P. Hasenfratz and J. Kuti, Phys. Reports 40C, 75 (19 78).

    Google Scholar 

  4. A.T.M. Aerts. The MIT Bagmodel and Some Spectroscopic Applications (Krips Repro, Meppel, The Netherlands, 1979 ) ( Ph.D. thesis, Nijmegen).

    Google Scholar 

  5. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and V.F. Weisskopf, Phys. Rev. D9, 3471 (1974).

    ADS  MathSciNet  Google Scholar 

  6. A. Chodos, R.L. Jaffe, K. Johnson, and C.B. Thorn, Phys. Rev. D10, 2599 (1974). T.A. DeGrand, R.L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. DL2, 2060 (1975) referred to as DJJK.

    ADS  MathSciNet  Google Scholar 

  7. A. Chodos and Charles B. Thorn, Phys. Rev. D12, 2733 (1975).

    ADS  Google Scholar 

  8. J.J.J. Kokkedee. The Quark Model (Benjamin, New York, 1969 ).

    Google Scholar 

  9. C. Bender and P. Hays, Phys. Rev. D14, 2622 (1976).

    ADS  Google Scholar 

  10. K. Johnson, Coral Gables talk, MIT-CTP 766 (1979).

    Google Scholar 

  11. C. Rebbi, Phys. Rev. D12, 2407 (1975); Phys. Rev. D14, 2362 (1976). T.A. DeGrand and C. Rebbi, Phys. Rev. D17, 2358.

    ADS  MathSciNet  Google Scholar 

  12. T.A. DeGrand and R.L. Jaffe, Ann. Phys. (NY) JL00, 425 (1976). T.A. DeGrand, Ann. Phys. (N.Y.) 101, 496 (1976).

    Google Scholar 

  13. K. Johnson, Phys. Letters 78B, 259 (1978).

    ADS  Google Scholar 

  14. C. Callen, R. Dashen, and D. Gross, Phys. Rev. D19, 1826 (1979).

    ADS  Google Scholar 

  15. G.E. Brown and Mannque Rho, Phys. Letters 82B, 177 ( 1979 ); G.E. Brown, Mannque Rho, and Vincent Vento, SUNY Stony Brook report (1979).

    Google Scholar 

  16. T.D. Lee, Phys. Rev. D19, 1802 (1979); R. Friedberg and T.D. Lee, Phys. Rev. D18, 2623 (1978). See also J. Kogut and L. Susskind, Phys. Rev. D9, 3501 (1974), M. Creutz and K.S. Soh, Phys. Rev. D12, 443 (1975), and K. Huang and Daniel R. Stump, Phys. Rev. D14, 223 (1976).

    ADS  Google Scholar 

  17. S. Mandelstam, Physics Rep. 23C, 245 (1976).

    Article  ADS  Google Scholar 

  18. Daniel Lu, private communication (1979).

    Google Scholar 

  19. C. DeTar, Phys. Rev. D17, 302, 323 (1978); 19, 1028 (E) (1979).

    Google Scholar 

  20. C. DeTar, Phys. Rev. D19, 1451 (1979).

    ADS  Google Scholar 

  21. K. Johnson and C.B. Thorn, Phys. Rev. D13, 1934 (1976); K. Johnson and C. Nohl, Phys. Rev. DI291 (1979).

    ADS  Google Scholar 

  22. C. Rebbi, Phys. Rep. 12C, 1 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Eichten, K. Gottfried, K. Lane, T. Kinoshita, and T.-M Yan, Phys. Rev. D17, 3090 (1978).

    ADS  Google Scholar 

  24. A. Chodos and C.B. Thorn, Nucl. Phys. B72, 509 (1974). See also K. Kikkawa, Phys. Rev. D18, 2606 (1978); K. Kikkawa, Tsuneyuki Kotani, Masa-aki Sato, and Masakatsu Kenmoku, Phys. Rev. D19, 1011 (1979).

    ADS  Google Scholar 

  25. R.L. Jaffe, Phys. Rev. D15, 267, 281 (1977).

    ADS  Google Scholar 

  26. R.L. Jaffe, Phys. Rev. D17, 1444 (1978). Chan-Hong Mo et al., Phys. Lett. 76B, 634 (1978).

    ADS  MathSciNet  Google Scholar 

  27. P.J.G. Mulders, A. Th. M. Aerts, and J.J. DeSwart, Phys. Rev. Letters 40, 1543 (1978).

    Article  ADS  Google Scholar 

  28. M. Baranger and M. Veneroni, Ann. Physics (N.Y.) 114, 123 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  29. R.L. Jaffe and F.E. Low, MIT-CTP 747 (19 79).

    Google Scholar 

  30. E.P. Wigner, and L. Eisenbud, Phys. Rev. 72, 29 (1947).

    Article  ADS  Google Scholar 

  31. G.T. Fairley and E.J. Squires, Nucl. Phys. B93, 56 (1975).

    Article  ADS  Google Scholar 

  32. F.E. Low, Phys. Rev. D12, 163 (1975).

    Article  ADS  Google Scholar 

  33. R.S. Willey, Phys. Rev. D18, 270 (1978). See also P.M. Fishbane and M.T. Grisaru, Phys. Rev. Letters 40, 931 (1978).

    ADS  Google Scholar 

  34. M.M. Nagels, T.A. Rijken and J.J. DeSwart, Phys. Rev. D17, 768 (1978).

    ADS  Google Scholar 

  35. For another approach, see C.E. Carlson, F. Myhrer, and G.E. Brown, SUNY Stony Brook report (1979).

    Google Scholar 

  36. See, for example, G.F. Chew, The Analytic S-Matrix (Benjamin, New York, 1966).

    Google Scholar 

  37. S.L. Adler and R.F. Dashen. Current Algebras (Benjamin, New York, 1968). H. Pagels, Phys. Reports 16C, 219 (1975).

    Google Scholar 

  38. S.B. Treiman, R. Jackiw, and D.J. Gross. Lectures on Current Algebra and Its Applications (Princeton University Press, Princeton, 1972), p. 101 ff.

    Google Scholar 

  39. J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  41. M. Gell-Mann and M. Levy, Nuovo Cim. 16, 705 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  42. John F. Donoghue and K. Johnson, MIT-CTP 802 (1979).

    Google Scholar 

  43. S. Weinberg, Harvard preprint HUTP-77/A057; J. Gunion et al., Nucl. Phys. B23, 445 (1977).

    Google Scholar 

  44. Donoghue and Johnson (Ref. 42) give a slightly different estimate of the c.m. correction, namely pm 10/(mR), and find g= 1.27. They also calculate an improved magnetic moment for the proton: 2mpyp =2.5 and charge radius = (0.82)fm. Experimental values for the last two are 2.79 and (0.88)2n.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

DeTar, C. (1980). The Mit Bag Model. In: Mahanthappa, K.T., Randa, J. (eds) Quantum Flavordynamics, Quantum Chromodynamics, and Unified Theories. NATO Advanced Study Institutes Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3099-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3099-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3101-8

  • Online ISBN: 978-1-4613-3099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics