Skip to main content

Abstract

The attenuation of planar shock waves generated by plate impact was monitored by their decay throughout massive nickel blocks. This was accomplished, during the passage of the wave, by manganin piezoresistive gages connected to oscilloscopes and, in the post-shocked condition, by hardness measurements and TEM observations at various distances from the impact surface in the nickel blocks. The nickel systems exhibited different metallurgical microstructures before shock loading: preshocked (grain size 150 μm), annealed (grain size 150 μm)and annealed (grain size 32 μm). For each system two different initial shock pressures were used: 10 and 25 GPa. The pulse duration was held constant at 2 μs. The experimental records of oscilloscopes showed that there are no significant effects of grain size and pre-deformation on the attenuation in nickel. The observed attenuation was compared with the calculated one according to hydrodynamic theory and poor agreement was found, An “accumulation” model based on the conservation of energy is presented herein to explain the dissipative processes of shock waves in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleton, A.S., and Waddington, J.S., Acta Met., 12, 956 (1964).

    Article  CAS  Google Scholar 

  2. Chamgion, A.R., and Rohde, R.W., J. Appl. Phys., 41, 2213

    Google Scholar 

  3. Lokken, R.O., Stone, G.A., and Orava, R.N., South Dakota School of Mines and Technology, unpublished results.

    Google Scholar 

  4. Murr, L.E., and Huang, J.Y., Materials Science and Engineering, 19, 115 (1975).

    Article  CAS  Google Scholar 

  5. Moin, E., and Murr, L.E., Materials Science and Engineering, 37, 249 (1979).

    Article  CAS  Google Scholar 

  6. Orava, R.N., and Wittman, R.H., “Proc. 5th International Conf. High Energy Rate Fabrication”. U. of Denver, Denver, Colo.,P. 111 (1975).

    Google Scholar 

  7. Jones, O.E., “Metal Response Under Explosive Loading”, in proc. of Behavior and Utilization of Explosive in Engineering Design, L. Davidson et al., (eds.), New Mexico Section, ASME, Albuquerque, N.M., P. 125 (1972).

    Google Scholar 

  8. Appendices A-G, this volume.

    Google Scholar 

  9. Keh, A.S., “Direct Observation of Imperfections in Crystals”, Newkirk, J.B., and Wenick. J.H., (eds.), Interscience Publisher, New York, P. 213 (1962).

    Google Scholar 

  10. Fowles, G.R., J. Appl. Phys, 31, 655 (1960).

    Article  Google Scholar 

  11. Erkman, J.O., and Christensen, A.B., J. Appl. Phys., 38, 5395 (1970).

    Article  Google Scholar 

  12. Trueb, L.F., J. Appl. Phys., 40, 2976 (1969).

    Article  CAS  Google Scholar 

  13. Murr, L.E., Vydyanath, H.R., and Foltz, J.V., Met. Trans . 1, 3215 (1970).

    CAS  Google Scholar 

  14. Kazmi, B., and Murr, L.E., this volume.(Chapter 41)

    Google Scholar 

  15. Meyers, M.A., Scripta Met., 12, 21 (1978).

    Article  CAS  Google Scholar 

  16. Neumann, J.V. and Richtmyer, R.D., J. Appl. Phys., 21, 232 (1950).

    Article  Google Scholar 

  17. Dieter, G.E., “Mechanical Metallurgy”, McGraw-Hill Inc., New York, p. 169 (1976).

    Google Scholar 

  18. Kressel, H., and Brown, N.J., J. Appl. Phys., 38, 1618 (1967).

    Article  CAS  Google Scholar 

  19. Buckel, W., and Hilsch, R., Phys. 138, 109 (1954).

    Article  CAS  Google Scholar 

  20. Paneth, H., Phys. Rev., 80, 708 (1950).

    Article  CAS  Google Scholar 

  21. Meyers, M.A., in “Strength of Metals and Alloys,” Vol. I, (eds.), Haasen, P., Gerold, V., and Kostorz, G., Pergamon Press, New York, p. 549 (1979).

    Google Scholar 

  22. DeCarli, P.S. and Meyers, M.A., “Design and Instrumentation of Uniaxial Strain Shock Recovery Experiments”, this volume, (Chapter 22).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Hsu, CY., Hsu, KC., Murr, L.E., Meyers, M.A. (1981). The Attenuation of Shock Waves in Nickel. In: Meyers, M.A., Murr, L.E. (eds) Shock Waves and High-Strain-Rate Phenomena in Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3219-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3219-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3221-3

  • Online ISBN: 978-1-4613-3219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics