Skip to main content

Thermomechanical Processing by Shock Waves: An Overview

  • Chapter
Shock Waves and High-Strain-Rate Phenomena in Metals
  • 1095 Accesses

Abstract

Research efforts assessing the potential of shock TMP for a number of alloy systems are reviewed. Shock loading seems to be a promising deformation technique in TMP when (a) the initial strength of the alloy is such that conventional deformation is precluded and (b) when the shock wave induces property improvements that are significantly superior to those of conventional deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henning, H.J., “Applications and Potential of Thermomechanical Treatment”, Battelle Memorial Institute, DMIC Memo No. 251, Nov. (1970).

    Google Scholar 

  2. Zackay, V.F., Mat. Sci. and Eng., 25, 247 (1976).

    Article  CAS  Google Scholar 

  3. Delaey, L., Zeitschrift Metallk. 63, 531 (1972).

    CAS  Google Scholar 

  4. Silverman, S.M., Godfrey, L., Hauser, H.A., and Seward, E.T. “Effect of Shock-Induced High Dynamic Pressures on Iron-Base Alloys”, Pratt and Whitney Aircraft, East Hartford, CT. Aeronautical Systems Division, W-PAFB, Report No, ASD-TDR-62- 442, August, 1962. AD 287 473.

    Google Scholar 

  5. Stein, B.A. and Johnson, P.C., Trans. AIME, 227, 1188 (1963).

    CAS  Google Scholar 

  6. Koepke, B.C., Jewett, J.P., and Chandler, W.T., “Strengthening Iron-Base Alloys by Shock Waves”, Rocketdyne, North American Aviation, Inc., Canoga Park, Calif. Air Force Materials Laboratory, W-PAFB, Report No. ML TDR 64-282, October, 1964.

    Google Scholar 

  7. Doherty, A.E., Mykkanen, J., and Henriksen, E.K., “Dynamic Pressure Hardening of Irregular Shapes”, Aerojet-General Co., Air Force Materials Laboratory, Wright-Patterson Air Force Base, No. AFML-TR-66-127, July, 1966. AD 489 402.

    Google Scholar 

  8. Mykkanen, J.P., Doherty, A.E., and Henriksen, E.K., “A New Method for Strengthening of Metals with Applications to Production-Type Parts”, Proc. 2nd International Conf, of the Center for High Energy Rate Forming,” ed. A.A. Ezra, U. of Denver, p. 2.3.1 (1969).

    Google Scholar 

  9. Orava, R.N., Chap. XII, Center for High Energy Forming, Army Materials and Mechanics Research Center, Final Report, AMMRC CR 66-05/51 (F).

    Google Scholar 

  10. Wittman, R.H., “The Use of Shock Waves to Strengthen S7 Steel Alloy Swaging Mandrels”, Denver Research Institute, Denver, Colorado. U.S. Naval Ordinance Station, Louisville, KY, Final Report, Contract No. N00197-73-C-0444 (J), June 30, 1974,

    Google Scholar 

  11. Dunleavy, J.C. and Spretnak, J.W., “Soviet Technology on Thermal-Mechanical Treatment of Metals”, DMIC Memo. 244 Battelle Memorial Institute, Columbus, Ohio, Nov., 1969, Contract No, F33615-69-C-l343.

    Google Scholar 

  12. Kutsar, A.R., Utevsky, L.M., and Pershin, S.V., Phys. Met. Metallogr., 40, 130 (1975).

    Google Scholar 

  13. Berezhnoi, V.V., Gelunova, Z.M., Kagan, E.S., Kovalenko, V.A., and Yaroshenko, A.P., Tr. Volgogr. Politekn. Inst., 7, 244 (1975).

    CAS  Google Scholar 

  14. Kutsar, A.R. and Utevsky, L.M., Fizika Metallov Metallovedenie, 40, 153 (1975).

    CAS  Google Scholar 

  15. Smirnov, M.A., Shteinberg, M.M., Atroshchenko, E.S., Sedykh, V.S., and Morozov, O.P., Met. Sci. Heat Treat., 15, 49 (1973).

    Article  Google Scholar 

  16. Strok, L.P., Vlasov, V.I., and Krasikov, K.I., Trudy Vses, N-I Inst. Zheliz. Dorog. Transp., 464, 118 (1972).

    Google Scholar 

  17. Vlasev, I.S., Golovchiner, Ya. M., and Pashkov, P.O., Tr. Volgog. Politekh. Inst., 7, 235 (1975).

    Google Scholar 

  18. Orava, R.N., “The Aging Response of Shock-Deformed Nickel-Base Superalloys”, Denver Research Institute, University of Denver, U.S. Naval Air Systems Command, Final Report No. DRI 2592, January, 1972, AD 737 310.

    Google Scholar 

  19. Orava, R.N., Mater. Sci. Eng., 11, 177 (1973).

    Article  CAS  Google Scholar 

  20. Orava, R.N., “Thermomechanical Processing of Nickel-Base Superailoys by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, Final Report No. DRI 2618, March, 1973. AD 761 218.

    Google Scholar 

  21. Orava, R.N., “Response of Nickel-Base Superalloys to Thermomechanical Processing by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, Final Report No. DRI 2638, April, 1974.

    Google Scholar 

  22. Meyers, M.A., “Thermomechanical Processing of a Nickel-Base Superalloy by Cold Rolling and Shock-Wave Deformation”, Ph.D. Dissertation, University of Denver, Colorado, May, 1974.

    Google Scholar 

  23. Meyers, M.A., and Orava, R.N., Met, Trans., 7A, 179 (1976).

    Article  Google Scholar 

  24. Orava, R.N., and Wittman, R.H., in “Advances in Deformation Processing”, eds., Burke, J.J. and Weiss, V., p. 485, Plenum Press, New York, 1978.

    Google Scholar 

  25. Orava, R.N., “Thermomechanical Processing of Unitemp AF2-1DA Nickel-Base Superalloy by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, First Quarterly Progress Letter, June, 1974,

    Google Scholar 

  26. Antrobus, D.J., and Reid, C.N., “Precipitation Hardening of Shock-Loaded Aluminum Alloys”, University of Birmingham, England. Ministry of Defense, Final Report, Agreement No. PD/27/056/ADM, March, 1972.

    Google Scholar 

  27. Conserva, M., Buratti, M., de Russo, E., and Gatto, F., Mater. Sci. Eng., 11, 103 (1973).

    Article  CAS  Google Scholar 

  28. Jacobs, A.J., “The Mechanism of Stress Corrosion Cracking in 7075 Aluminum”, Proc. Conf. on Fundamental Aspects of Stress Corrosion Cracking, ed. Staehle, R.W., et al., NACE, Houston, 530 (1969).

    Google Scholar 

  29. Wittman, R.H., in “Metallurgical Effects at High Strain Rates”, eds., Rohde, R.W., Butcher, B.M., Holland, J.R., and Karnes, C.H., p. 669, Plenum Press, New York, 1973.

    Google Scholar 

  30. Stein, C., Scripta Met., 9, 67 (1975).

    Article  CAS  Google Scholar 

  31. Greenhut, V.A., Chen, M.G., Banks, R., and Golaski, S., “Long-Range Diffusion of Vacancies and Substitutional Atoms During High Strain-Rate Deformation of Aluminum Alloys”, Proc. ICM II, Boston, MA, August, 1975.

    Google Scholar 

  32. Nordstrom, T.V., Rohde, R.W., and Mottern, D.J., Met. Trans., 6A, 1561 (1975).

    Article  Google Scholar 

  33. de Carvalho, M.B., “Explosive Thermomechanical Processing of Beta III Titanium Alloy”, M.Sc. Dissertation, U. of Denver, Colorado, 1973.

    Google Scholar 

  34. Kalish, D., and Rack, H.J., Met. Trans., 3, 1885 (1973).

    Article  Google Scholar 

  35. Fountain, C., Naval Weapons Center, China Lake, CA, private communication.

    Google Scholar 

  36. Oblak, J.M., and Owczarski, W.A., Met. Trans., 3, 617 (1972).

    Article  CAS  Google Scholar 

  37. McElroy, R.J., and Szkopiak, F.C., Intl. Met. Reviews, 17, 174 (1972).

    Google Scholar 

  38. Schmatz, D.J., Metals Eng. Quart., 20, May (1966).

    Google Scholar 

  39. Zackay, V.F., J. Iron Steel Inst., 894, June (1969).

    Google Scholar 

  40. Meyers, M.A., Met. Trans., 8A, 1581 (1977).

    Article  Google Scholar 

  41. Orava, R.N., Stone, G.A., Pelton, A.R., and Meyers, M.A., South Dakota School of Mines and Technoloqy, unpublished results (1978).

    Google Scholar 

  42. Willan, W.C., South Dakota School of Mines and Technology, M.Sc. Dissertation, 1978.

    Google Scholar 

  43. Wittman, R.H., Denver Research Institute, U. of Denver, unpublished results (1975).

    Google Scholar 

  44. Oblak, J.M. and Owczarsky, W.A., Trans. TMS-AIME, 242, 1563 (1968).

    CAS  Google Scholar 

  45. Rack, H., Soripta Met., 12, 1007 (1978).

    Article  CAS  Google Scholar 

  46. Robertson, J.M., Simon, J.W., and Tillman, T.D., “Shock Wave Thermomechanical Processing of Aircraft Gas Turbine Disk Alloys”, Pratt & Whitney Airc. Group, U.S. Naval Air Systems Command, Final Technical Report, August, 1979, Contract No. N00019-78-C-0270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Meyers, M.A., Orava, R.N. (1981). Thermomechanical Processing by Shock Waves: An Overview. In: Meyers, M.A., Murr, L.E. (eds) Shock Waves and High-Strain-Rate Phenomena in Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3219-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3219-0_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3221-3

  • Online ISBN: 978-1-4613-3219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics