Skip to main content

Mutagenesis and Repair in Yeast Mitochondrial DNA

  • Chapter
Molecular and Cellular Mechanisms of Mutagenesis

Summary

The mitochondrial DNA (mtDNA) is a dispensable genome in the facultative aerobe Saccharomyces cerevisiae, Since cell viability is maintained even if mtDNA is nonfunctional, mitochondrial mutagenesis can be studied. Marked dissimilarities exist between nuclear and mtDNA with respect to base composition, structure, multiplicity, and heterogeneity of molecules; differences in mutagenic processes are consequently expected. Mitochondrial mutants belong to two classes that both exhibit non-Mendelian inheritance; the rho (or “petite” mutation) results from massive deletions with a preferential loss of a specific segment, accompanied by repetitions of retained sequences; the other type is due to point mutations or small deletions and includes antibiotic resistant mutants and mutants defective in the synthesis of one or more components of the mitochondrial membrane complex (mit) or in the mitochondrial protein machinery (syn). The rho mutation is extremely frequent even spontaneously (from 1 to a few percent), whereas mitochondrial point mutations are relatively rare even with induced mutagenesis. Nuclear mutations due to molecular modifications similar to those seen in rho are rather infrequent. The genetic control of mitochondrial mutagenesis requires gene products involved either (1) in both nuclear and mitochondrial mutagenesis, the genes being located in the nucleus; or (2) specifically in mitochondrial mutagenic processes, the genes being located either in the nuclear or in the mitochondrial genomes.

Since the frequency of rho mutants and the loss of mitochondrial genetic markers by ultraviolet light can be modulated according to growth phases, the genetic background (rad, uvsρ, gam genes, etc.), dark holding in presence or absence of protein synthesis inhibitors, etc., it was hypothesized that mtDNA-induced lesions could be repaired in certain conditions. Indeed, pyrimidine dimers in mtDNA can be photoreactivated but not removed in a controlled process, as in the nucleus, by excision repair. When growing cells are UV-treated, a degradation of the mtDNA is observed and this is accompanied by a reduction in size of mtDNA parental molecules. However, this is followed upon transfer in growth medium by restitution of high molecular weight mtDNA molecules. Consequently, it is proposed that the recovery of the rho + phenotype is due to a nonexcision dark repair process possibly depending upon replication and/or recombination acting on damaged mtDNA.

The comparative susceptibility of the nuclear and mitochondrial genomes to different families of chemicals will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Averbeck, D., and Moustacchi, E., 1975, 8-Methoxypsoralen plus 365 nm light effects and repair in yeast, Biochim. Biophys. Acta, 395: 393.

    Google Scholar 

  • Averbeck, D., and Moustacchi, E., 1979, Genetic effects of 3-carboxy- psoralen, angelicin, psoralen and 8-methoxypsoralen plus 365 nm irradiation in S a c c h a r o my c e s cerevisiae. Induction of reversions, mitotic crossing-over, gene conversion and cytoplasmic “petite” mutation, Mutat. Res., 68: 133.

    Article  PubMed  CAS  Google Scholar 

  • Averbeck, D., and Moustacchi, E., 1980, Decreased photo-induced mutagenicity of monofunctional as opposed to bifunctional furocoumarins in yeast. Photochem. Photobiol., 31:475.

    Article  CAS  Google Scholar 

  • Averbeck, D., Moustacchi, E., and Bisagni, E., 1978, Biological effects and repair of damage photo-induced by a derivative of psoralen substituted at the 3,4 reaction site. Photoreactivity of this compound and lethal effects in yeast, Blochim. Biophys. Acta, 518: 464.

    CAS  Google Scholar 

  • Backaus, B., Schweyen, R. J., Kaudewitz, F., and Dujon, B,, 1978, On the formation of ρ- petites in yeast. III. Effects of temperature on transmission and recombination of mitochondrial markers and on ρ- cell formation in temperature sensitive mutants of Saccharomyces cerevisiae, Mol. Gen. Genet., 161: 153.

    Google Scholar 

  • Baranowska, H., and Putrament, A., 1979, Mitochondrial mutagenesis in Saccharomyces cerevisiae. III. Nitrous acid, Mutat. Res., 63: 291.

    Article  PubMed  CAS  Google Scholar 

  • Barclay, B. J., and Little, J. G., 1978, Genetic damage during thymidylate starvation in Saccharomyces cerevisiae, Mol. Gen. Genet., 160: 33.

    PubMed  CAS  Google Scholar 

  • Bastos, R. N., and Mahler, H. R., 1976, Modulation of petite induction by low concentrations of ethidium bromide, Biochem. Biophys. Res. Commun., 69: 528.

    Article  CAS  Google Scholar 

  • Blanc, H., and Dujon, B., 1980, Replicator regions of yeast mitochon- DNA responsible for suppressiveness, Proc. Natl. Acad. Sci. U.S.A., 77: 3942.

    Article  PubMed  CAS  Google Scholar 

  • Bolotin-Fukuhara, M., Faye, G., and Fukuhara, H., 1977, Temperature- sensitive respiratory-deficient mitochondrial mutations: Isolation and genetic mapping, Mol. Gen. Genet., 152: 295.

    Article  PubMed  CAS  Google Scholar 

  • Borst, P., and Grivell, L. A., 1978, The mitochondrial genome of yeast, Cell, 15: 705.

    Article  PubMed  CAS  Google Scholar 

  • Caron, F., Jacq, C., and Rouvière-Yaniv, J., 1979, Characterization of a histone-like protein extracted from yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A., 76: 4625.

    Google Scholar 

  • Chen, S. Y., Ephrussi, B., and Hottinguer, H., 1950, Nature génétique des mutants à déficience respiratoire de la souche BII de la levure de boulangerie, Heredity, 4: 337.

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker, G. D., and Miklos, G. L. G., 1974, Mitochondrial genetics, circular DNA and the mechanism of the petite mutation in yeast, Genet. Res. Camb., 24: 43.

    Article  CAS  Google Scholar 

  • Clark-Walker, G. D., and Miklos, G. L., 1975, Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells, Proc. Natl. Acad. Sci. U.S.A., 72: 372.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. A., Doda, J. N., and Friedberg, E. C., 1974, The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria, Proc. Natl. Acad. Sci. U.S.A., 71: 2777.

    Article  PubMed  CAS  Google Scholar 

  • Criddle, R. S., Wheelis, L., Trembath, M. K., and Linnane, A. W., 1976, Molecular and genetic events accompanying petite induction and recovery of respiratory competence induced by ethidium bromide, Mol. Gen. Genet., 144: 263.

    Article  PubMed  CAS  Google Scholar 

  • De Zamaroczy, M., Baldacci, G., and Bernardi, G., 1979, Putative origins of replication in the mitochondrial genome of yeast, FEBS Lett., 108: 429.

    Article  PubMed  Google Scholar 

  • Dujardin, G., and Dujon, B., 1979, Mutants in yeast affecting ethidium bromide-induced ρ- formation and their effects on transmission and recombination of mitochondrial genes, Mol. Gen. Genet., 171: 205.

    Article  PubMed  CAS  Google Scholar 

  • Egilsson, V., Evans, I., and Wilkie, D., 1979, Toxic and mutagenic effects of carcinogens on the mitochondria of Saccharomyces cerevisiae, Mol. Gen. Genet., 174: 39.

    Google Scholar 

  • Ejchart, A., and Putrament, A., 1979, Mitochondrial mutagenesis in Saccharomyces cerevisiae. I. Ultraviolet radiation, Mutat. Res., 60: 173.

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi, B., 1953, Cytoplasmic heredity in yeast, in: “Nucleo- cytoplasmic Relations in Microorganisms,” Clarendon Press, Oxford.

    Google Scholar 

  • Ephrussi, B., and Hottinguer, H., 1951, On an unstable cell state in yeast, Cold Spring Harbor Symp. Quant. Biol., 16: 75.

    PubMed  CAS  Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Chimenes, A. M., 1949, Action de l’acriflavine sur les levures. I. La mutation “petites colonies,” Ann. Inst. Pasteur, 76:351.

    Google Scholar 

  • Faugeron-Fonty, G., Culard, G., Baldacci, G., Coursot, R., Prunell, A., and Bernardi, G., 1979, The mitochondrial genome of wildtype yeast cells. VIII. The spontaneous cytoplasmic “petite” mutation, J. Mol. Biol., 134: 493.

    Article  PubMed  CAS  Google Scholar 

  • Faye, G., Fukuhara, H., Grandchamp, G., Lazowska, J., Michel, F., Casey, J., Getz, G., Locker, H., Rabinowitz, M., Bolotin- Fukuhara, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., and Slonimski, P., 1973, Mitochondrial nucleic acids in the petite colony mutants: Deletions and repetitions of genes, Biochimie, 55: 779.

    Article  PubMed  CAS  Google Scholar 

  • Foury, F., and Goffeau, A., 1979, Genetic control of enhanced mutability of mitochondrial DNA and y-ray sensitivity in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 76: 6529.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, C., Strauss, F., and Bernardi, G., 1980, Excision sequences in the mitochondrial genome of yeast, Nature, 283: 218.

    Article  PubMed  CAS  Google Scholar 

  • Gardella, S., and MacQuillan, A. M., 1977, Ethidium bromide mutagenesis in Saccharomyces cerevisiae: Modulation by growth medium components, Mutat. Res., 46: 269.

    PubMed  CAS  Google Scholar 

  • Goldring, D. R., Grossman, L. I., Krupnick, D., Cryer, D. R., and Marmur, J., 1970, The “petite” mutation in yeast: Loss of mitochondrial deoxyribonucleic acid during induction of “petites” with ethidium bromide, J. Mol. Biol., 52: 323.

    Article  PubMed  CAS  Google Scholar 

  • Green, G., and MacQuillan, A. M., 1980, Photorepair of ultraviolet induction petite mutational damage in Saccharomyces cerevisiae requires the product of the PHR1 gene, J. Bacteriol., 144: 826.

    PubMed  CAS  Google Scholar 

  • Hall, R. M., Trembath, M. F., Linnane, A. N., Wheelis, L., and Criddle, R. S., 1976, Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide, Mol. Gen. Genet., 144: 253.

    Article  PubMed  CAS  Google Scholar 

  • Handwerker, A., Schweyen, R. J., Wolf, K., and Kaudewitz, F., 1973, Evidence for an extrakaryotic mutation affecting the maintenance of the rho factor in yeast, J. Bacteriol., 113: 1307.

    PubMed  CAS  Google Scholar 

  • Hastings, P. J., Quah, S. K., and von Borstel, R. C., 1976, Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA, Nature (London), 264: 719.

    Article  CAS  Google Scholar 

  • Henriques, J. A. P., Chanet, R., Averbeck, D., and Moustacchi, E., 1977, Lethality and “petite” mutation induced by photoaddition of 8-methoxypsoralen in yeast. Influence of ploidy, growth phases and stages in the cell cycle, Mol. Gen. Genet., 158: 63.

    Article  PubMed  CAS  Google Scholar 

  • Henriques, J. A. P., and Moustacchi, E., 1980, Sensitivity to photo- addition of mono- and bifunctional furocoumarins of X-ray sensitive mutants of Saccharomyces cerevisiae, Photochem. Phdtobiol., 31: 557.

    Article  CAS  Google Scholar 

  • Henriques, J. A. P., and Moustacchi, E., 1980, Isolation and characterization of pso mutants sensitive to photoaddition of psoralen derivatives in Saccharomyces cerevisiae, Genetics, 95: 273.

    PubMed  CAS  Google Scholar 

  • Heude, M., and Chanet, R., 1975, Protein synthesis and recovery of both survival and cytoplasmic “petite” mutation in ultraviolet- treated yeast cells. II. Mitochondrial protein synthesis, Mutat. Res., 28: 47.

    Article  PubMed  CAS  Google Scholar 

  • Heude, M., Chanet, R., and Moustacchi, E., 1975, Protein synthesis and recovery of both survival and cytoplasmic “petite” mutation in ultraviolet-treated yeast cells. I. Nuclear-directed protein synthesis, Mutat. Res., 28: 37.

    Article  PubMed  CAS  Google Scholar 

  • Heude, M., Fukuhara, H., and Moustacchi, E., 1979, Spontaneous and induced rho mutants of Saccharomyces cerevisiae: Patterns of the loss of mitochondrial genetic markers, J. Bacteriol., 139: 460.

    PubMed  CAS  Google Scholar 

  • Heude, M., and Moustacchi, E., 1973, Influence de la croissance sur la réparation des radiolésions responsables de la mutation cytoplasmique “petite colonie” chez la levure, C. R. Acad. Sci. Paris, 277:1561.

    Google Scholar 

  • Heude, M., and Moustacchi, E., 1979, The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: Effects of different post irradiation treatments, Genetics, 93: 81.

    PubMed  CAS  Google Scholar 

  • Hixon, S., Burnham, A. D., and Irons, R. L., 1979, Reversal on protection by light of the ethidium bromide induced petite mutation in yeast, Mol. Gen. Genet., 169: 63.

    Article  PubMed  CAS  Google Scholar 

  • Hixon, S., Franks, H. L., and Moustacchi, E., 1980, Yeast mitochondrial DNA characterization after ultraviolet irradiation, Mutat. Res., 73: 267.

    Article  PubMed  CAS  Google Scholar 

  • Hixon, S., and Moustacchi, E., 1978, The fate of mitochondrial DNA after ultraviolet irradiation. I. Degradation during post-UV dark liquid holding in non-nutrient medium, Biochem. Biophys. Res. Commun., 81: 288.

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, C. P., and Borst, P., 1971, Conditions that prevent ρ- induction by ethidium bromide, Biochem. Biophys. Res. Commun., 45: 1250.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, L. H., 1979, Nuclear mutations in Saccharomyces cerevisiae which increase the spontaneous mutation frequency in mitochondrial DNA, Mol. Gen. Genet., 170: 327.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C. W., 1981, Mutagenesis in Saccharomyces cerevisiae, in: “Advances in Genetics,” E. W. Caspari, ed., Academic Press, New York, in press.

    Google Scholar 

  • Leff, J., and Eccleshall, R. T., 1978, Replication of bromodeoxy- uridylate-substituted mitochondrial DNA in yeast, J. Bacteriol., 135: 436.

    PubMed  CAS  Google Scholar 

  • Lemontt, J. F., 1970, Genetic control of mutation induction in Saccharomyces cerevisiae, Ph.D. thesis, University of California, UCLRL-20115.

    Google Scholar 

  • Lemontt, J. F., 1980, Genetic and physiological factors affecting repair and mutagenesis in yeast, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York.

    Google Scholar 

  • Lusena, C. V., and James, A. P., 1976, Alterations in mitochondrial DNA of yeast which accompany genetically and environmentally controlled changes in ρ- mutability, Mol. Gen. Genet., 144: 119.

    Article  PubMed  CAS  Google Scholar 

  • Magana-Schwencke, N., Averbeck, D., Henriques, J. A. P., and Moustacchi, E., 1980, Absence de pontages inter-chaines dans l’ADN traité par le 3-carbéthoxypsoralène et une irradiation à 365 nm, C. R. Acad. Sci. Paris, 291: 207.

    CAS  Google Scholar 

  • Magana-Schwencke, 13., Henriques, J. A. P., Chanet, R., and Moustacchi, E., 1981, The fate of 8-methoxypsoralen photo- induced cross-links in nuclear and mitochondrial yeast DNA. Comparison of wild type and repair deficient strains, submitted.

    Google Scholar 

  • Mahler, H. R., and Bastos, R. N., 1974, Coupling between mitochondrial mutation and energy transduction, Proc. Natl. Acad. Sci. U.S.A., 71: 2241.

    Article  PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Perlman, P. S., 1972, Mutagenesis by ethidium bromide and mitochondrial membrane, J. Supramol. Struct., 1: 105.

    Article  PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Perlman, P. S., 1973, Induction of respiration- deficient mutants in Saccharomyces cerevisiae by Berenil. I. Berenil, a novel, nonintercalating mutagen, Mol. Gen. Genet., 121: 285.

    Article  PubMed  CAS  Google Scholar 

  • Marmiroli, N., Donnini, C., Restivo, F. M., and Puglisi, P. O., 1980a, Analysis of rho mutability in Saccharomyces cerevisiae. II. Role of mitochondrial protein synthesis, Mol. Gen. Genet., 177: 589.

    PubMed  CAS  Google Scholar 

  • Marmiroli, N., Restivo, F. M., Donnini, C., Bianeti, L., and Puglisi, P. P., 1980b, Analysis of rho mutability in Saccharomyces cerevisiae. I. Effects of mmc and pet-ts alleles, Mol. Gen. Genet., 117: 581.

    Google Scholar 

  • McKee, R. H., and Lawrence, C. W., 1979, Genetic analysis of y-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains, Genetics, 93: 361.

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., 1964, Facteurs de la sensibilité des levures à l’action létale des radiations ionisantes. Etude d’un mutant radioresistant, Thèse Doctorat d’Etat (Paris), n° d’ordre 5172.

    Google Scholar 

  • Moustacchi, E., 1969, Cytoplasmic and nuclear genetic events induced by UV light in strains of Saccharomyces cerevisiae with different UV sensitivities, Mutat. Res., 7: 171.

    Article  PubMed  CAS  Google Scholar 

  • Moustacchi, E., 1972, Evidence for nucleus-independent steps in control of repair of mitochondrial damages. I. UV induction of the cytoplasmic “petite” mutation in UV-sensitive nuclear mutants of Saccharomyces cerevisiae, Mol. Gen. Genet., 114: 50.

    Article  PubMed  CAS  Google Scholar 

  • Moustacchi, E., 1973, Cytoplasmic “petite” induction in recombination-deficient mutants of Saccharomyces cerevisiae, J. Bacteriol., 115: 805.

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., and Enteric, S., 1970, Differential liquid holding recovery for the lethal effect and cytoplasmic “petite” induction by UV light, Mol. Gen. Genet., 109: 69.

    Article  PubMed  CAS  Google Scholar 

  • Moustacchi, E., Heude, M., and Hixon, S., 1978, The fate of yeast mitochondrial DNA and mitochondrial genetic markers after an ultraviolet light treatment, in: “Biochemistry and Genetics of Yeast,” M. Bacila, B. L. Horecker, and A. O. M. Stoppani, eds., Academic Press, New York.

    Google Scholar 

  • Moustacchi, E., Perlman, P. S., and Mahler, H. R., 1976, A novel class of Saccharomyces cerevisiae mutants specifically UV- sensitive to “petite” induction, Mol. Gen. Genet., 148: 251.

    Article  PubMed  CAS  Google Scholar 

  • Moustacchi, E., Waters, R., Heude, M., and Chanet, R., 1975, The present status of DNA repair mechanisms in UV-irradiated yeast taken as a model eukaryotic system, in: “Radiation Research: Biomedical, Chemical, and Physical Perspectives,” O. F. Nygaard, H. I. Adler, and W. K. Sinclair, eds., Academic Press, New York.

    Google Scholar 

  • Nagai, S., Yanagishima, N., and Nagai, H., 1961, Advances in the study of respiration-deficient (RD) mutation in yeast and other microorganisms, Bacteriol. Rev., 25: 404.

    PubMed  CAS  Google Scholar 

  • Nagley, P., and Linnane, A. W., 1970, Mitochondrial DNA deficient petite mutants of yeast, Biochem. Biophys. Res. Commun., 39: 989.

    Article  PubMed  CAS  Google Scholar 

  • Newlon, C. S., and Fangman, W. L., 1975, Mitochondrial DNA synthesis and cell cycle mutants of Saccharomyces cerevisiae, Cell, 5: 423.

    Article  PubMed  CAS  Google Scholar 

  • Newlon, C. S., Ludescher, P. D., and Walter, S. K., 1979, Production of petites by cell cycle mutants of Saccharomyces cerevisiae defective in DNA synthesis, Mol. Gen. Genet., 169: 189.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, K. M., 1979, Studies on the petite mutation in Saccharomyces cerevisiae, Ph.D. thesis, Australian National University.

    Google Scholar 

  • Oakley, K. M., and Clark-Walker, G. D., 1978, Abnormal mitochondrial genomes in yeast restored to respiratory competence, Genetics, 90: 517.

    PubMed  CAS  Google Scholar 

  • Oliver, S. G., and Williamson, D. H., 1976, The molecular events involved in the induction of petite yeast mutants by fluorinated pyrimidines, Mol. Gen. Genet., 146: 253.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti, C., Couder, H., and Guerineau, M., 1972, A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide, Biochem. Biophys. Res. Commun., 48: 950.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, M. H., Haynes, R. H., and Uretz, R. B., 1964, Dark recovery phenomena in yeast. I. Comparative effects with various inactivating agents, Radiat. Res., 21: 144.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, M., Guerineau, M., and Paoletti, C., 1975, Ethidium bromide mutagenesis in yeast: Protection by anaerobiosis, Mutat. Res., 30: 219.

    PubMed  CAS  Google Scholar 

  • Pittman, D., and Pedigo, P. R., 1959, Reactivation studies on yeasts. I. Ultraviolet inactivation and photoreactivation of respiration-sufficient and respiration-deficient yeasts, Exp. Cell Res., 17: 359.

    Article  PubMed  CAS  Google Scholar 

  • Polakowska, R., and Putrament, A., 1979, Mitochondrial mutagenesis in Saccharomyces cerevisiae. II. Methyl methanesulphonate and diepoxybutane, Mutat. Res., 61: 207.

    Article  PubMed  CAS  Google Scholar 

  • Prakash, L., 1975, Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light, J. Mol. Biol., 98: 781.

    Article  PubMed  CAS  Google Scholar 

  • Prakash, L., and Prakash, S., 1980, Genetic analysis of error-prone repair systems in Saccharomyces cerevisiae, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York.

    Google Scholar 

  • Prakash, S., Prakash, L., Burke, W., and Montelone, B. A., 1979, Effects of the rad52 gene on recombination in Saccharomyces cerevisiae, Genetics., 94: 31.

    Google Scholar 

  • Prunell, A., and Bernardi, G., 1974, The mitochondrial genome of wild-type yeast cells, J. Mol. Biol., 86: 825.

    Article  PubMed  CAS  Google Scholar 

  • Putrament, A., Baranowska, H., and Prazmo, W., 1973, Induction by manganese of mitochondrial antibiotic resistance mutations in yeast, Mol. Gen. Genet., 126: 357.

    Article  PubMed  CAS  Google Scholar 

  • Radman, M., Villani, G., Boiteux, S., Kinsella, A. R., Glickman, B. W., and Spadari, S., 1979, Replication fidelity: Mechanism of mutation avoidance and mutation fixation, Cold Spring Harbor Symp. Quant. Biol., 43: 937.

    PubMed  CAS  Google Scholar 

  • Raut, C., and Simpson, W. L., 1955, The effect of X rays and ultra-violet light of different wavelengths on the production of cytochrome-deficient yeasts, Arch. Biochem. Biophys., 57: 218.

    Article  PubMed  CAS  Google Scholar 

  • Resnick, M. A., 1969, A photoreactivationless mutant of Saccharomyces cerevisiae, Photochem. Photobiol., 9: 307.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, R. J., and Friedberg, E. C., 1980, Molecular mechanism of pyrimidine dimer excision in Saccharomyces cerevisiae. I. Studies with intact cells and cell-free systems, in: “DNA Repair and Mutagenesis in Eukaryotes,” W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds., Plenum Press, New York.

    Google Scholar 

  • Rodarte-Ramon, U. S., and Mortimer, R. K., 1972, Radiation-induced recombination in Saccharomyces: Isolation and genetic study of recombination-deficient mutants, Radiat. Res., 49: 133.

    Article  PubMed  CAS  Google Scholar 

  • Rupp, W. D., and Howard-Flanders, P., 1968, Discontinuities in the DNA synthesized in an excision-defective strain of Escherchia coli following ultraviolet irradiation, J. Mol. Biol., 31: 291.

    Article  PubMed  CAS  Google Scholar 

  • Saeki, T., Machida, I., and Nakai, S., 1980, Genetic control of diploid recovery after λ-irradiation in the yeast Saccharomyces cerevisiae., Mutat. Res., 73: 251.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, J. P. N., Heyting, C., Difranco, A., Borst, P., and Slonimski, P., 1976, The organization of genes in yeast mitochondrial DNA, in: “The Genetic Function of Mitochondrial DNA,” C. Saccone, and A. M. Kroon, eds., Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Sarachek, A., 1959, The induction by UV and the photoreactivation of heritable respiratory deficiency in polyploid Saccharomyces, Cytologia, 24: 507.

    Article  Google Scholar 

  • Schenberg-Frascino, A., and Moustacchi, E., 1972, Lethal and mutagenic effects of elevated temperature on haploid yeast, Mol. Gen. Genet., 115: 243.

    Article  PubMed  CAS  Google Scholar 

  • Schweyen, R. J., Steyer, U., Kaudewitz, F., Dujon, B., and Slonimski, P., 1976, Mapping of mitochondrial genes in Saccharomyces cerevisiae. Population and pedigree analysis of retention or loss of four genetic markers in rho- cells, Mol. Gen. Genet., 146: 117.

    Article  PubMed  CAS  Google Scholar 

  • Sena, E. P., Welch, J. W., Halvorson, H. O., and Fogel, S., 1975, Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae, J. Bacteriol., 123: 497.

    PubMed  CAS  Google Scholar 

  • Sherman, F., 1958, A study of the effects of elevated temperatures on the growth and inheritance of Saccharomyces cerevisiae, Ph.D. thesis, University of California, UCRL-8573.

    Google Scholar 

  • Sherman, F., Jackson, M., Liebman, S. W., Schweingruber, A. M., and Stewart, J. W., 1975, A deletion map of cycl mutants and its correspondence to mutationally altered iso-l-cytochrome c of yeast, Genetics, 81: 51.

    PubMed  CAS  Google Scholar 

  • Sherman, F., and Slonimski, P., 1964, Respiration deficient mutants of yeast. II. Biochemistry, Biochim. Biophys. Acta, 90: 1.

    Article  PubMed  CAS  Google Scholar 

  • Slonimski, P., and Lazowska, J., 1977, Transposable segments of mitochondrial DNA: A unitary hypothesis for the mechanism of mutation, recombination, sequence reiteration and suppressive- ness of yeast “petite colony” mutants, in: “Mitochondria 1977,” W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds., De Gruyter, Berlin.

    Google Scholar 

  • Slonimski, P., Perrodin, G., and Croft, J. H., 1968, Ethidium bromide-induced mutation of yeast mitochondria: Complete transformation of cells into respiratory-deficient nonchromosomal “petites”, Biochem. Biophys. Res. Commun., 30: 232.

    Article  PubMed  CAS  Google Scholar 

  • Slonimski, P., and Tzagoloff, A., 1976, Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and for coenzyme QH2-cytochrome-c-reductase, Eur. J. Biochem., 61: 27.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, B. J., 1981, Mitochondrial structure, in: “The Molecular Biology of the Yeast Saccharomyces,” J. N. Strathern, E. W. Jones, and J. R. Broach, eds., Cold Spring Harbor Laboratory, New York, in press.

    Google Scholar 

  • Stevens, B. J., and Moustacchi, E., 1976, Ultrastructural characterization of mitochondria from a yeast mutant sensitive to petite induction (uvsp72), in: “Genetics, Biogenesis and Bioenergetics of Mitochondria,” W. Bandlow, R. J. Schweyen, D. Y Thomas, K. Wolf, and F. Kaudewitz, eds., De Gruyter, Berlin.

    Google Scholar 

  • Storm, E. M., and Marmur, J. A., 1975, A temperature-sensitive mitochondrial mutation of Sac charomyce s cerevisiae, Biochem. Biophys. Res. Commun., 64: 752.

    Article  PubMed  CAS  Google Scholar 

  • Subik, J., Takacsova, G., and Kovau, L., 1978, Intramitochondrial ATP and cell functions. I. Growing yeast cells depleted of intramitochondrial ATP are losing mitochondrial genes, Mol. Gen. Genet., 166: 103.

    Article  PubMed  CAS  Google Scholar 

  • Swandbeck, G., 1976, Site genetic effects of psoralens and light, in: “Photochemical Therapy Basic Techniques and Side Effects,” E. G. Jung, and S. K. Schattauer, eds., Proc. of the German- Swedish Symp. of Photomedicine in Oberursel, Stuttgart, New York.

    Google Scholar 

  • Trembath, M. K., Monk, B. C., Kellerman, G. M., and Linnane, A. W., 1975, Biogenesis of mitochondria 36. The genetic and biochemical analysis of a mitochondrially determined cold-sensitive oligomycin-resistant mutant of Saccharomyces cerevisiae with affected mitochondrial ATPase assembly, Mol. Gen. Genet., 141: 9.

    Article  PubMed  CAS  Google Scholar 

  • Tuite, M. F., and Cox, B. X., 1980, Ultraviolet mutagenesis studies of (psi), a cytoplasmic determinant of Saccharomyces cerevisiae, Genetics, 95: 611.

    PubMed  CAS  Google Scholar 

  • Unrau, P., Wheatcroft, R., and Cox, B., 1971, The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast, Mol. Gen. Genet., 113: 359.

    Article  PubMed  CAS  Google Scholar 

  • von Borstel, R. C., Cain, K. T., and Steinberg, C, M., 1971, Inheritance of spontaneous mutability in yeast, Genetics, 69: 17.

    Google Scholar 

  • Waters, R., and Moustacchi, E., 1974, The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various postirradiation cell treatments, Biochim. Biophys. Acta, 366: 241.

    PubMed  CAS  Google Scholar 

  • Wheelis, L., Trembath, M. K., and Criddle, R. S., 1975, Petite induction and recovery in the presence of high levels of ethidium bromide, Biochem. Biophys. Res. Commun., 65: 838.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, P. A., Hammond, R. C., and Luha, A. A., 1972, Mechanism of mitochondrial mutation in yeast, Nature (London), New Biol., 238: 266.

    Article  CAS  Google Scholar 

  • Williamson, D. H., 1970, The effect of environmental and genetic factors on the replication of mitochondrial DNA in yeast, in: “Control of Organelle Development,” Symp. Soc. Exp. Biol. XXIV, P. Miller, ed., The University Press, Cambridge.

    Google Scholar 

  • Williamson, D. H., and Fennell, D. J., 1974, Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labeling experiments, Mol. Gen. Genet., 131: 193.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, D. H., Maroudas, N. G., and Wilkie, C. D., 1971, Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol, Mol. Gen. Genet 111: 209.

    Article  PubMed  CAS  Google Scholar 

  • Wintersberger, U., and Hirsch, J., 1973, Induction of cytoplasmic respiratory-deficient mutants in yeast by the folic acid analogue methotrexate. I. Studies on the mechanism of petite induction, Mol. Gen. Genet., 126: 61.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, K., and Kaudewitz, F., 1976, Effect of caffeine on the rho- induction with ethidium bromide in Saccharomyces cerevisiae, Mol. Gen. Genet., 146: 89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Moustacchi, E., Heude, M. (1982). Mutagenesis and Repair in Yeast Mitochondrial DNA. In: Lemontt, J.F., Generoso, W.M. (eds) Molecular and Cellular Mechanisms of Mutagenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3476-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3476-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3478-1

  • Online ISBN: 978-1-4613-3476-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics