Skip to main content

Thermodynamics of the Sphere-to-Rod Transition in Alkyl Sulfate Micelles

  • Chapter
Solution Behavior of Surfactants

Abstract

Above the CMC, alkyl sulfate micelles exhibit a sphere-to-rod transitition which is dependent on temperature, NaC1 concentration and detergent concentration. Using the techniques of quasielastic light scattering we have studied this transition as a function of these variables and have also investigated the effects of alkyl chain length, counter-ion size and urea concentration on micellar growth. These experimental data are interpreted using a quantitative model for the sphere-to-rod transition in which a thermodynamic parameter K, which measures the difference in chemical potential for a detergent molecule in the spherical or cylindrical micellar structure, is seen to play a fundamental role. The contributions of electrostatic and hydrophobic interactions to the value of K are discussed using a theoretical equation and are assessed quantitatively from the experimental deductions of K as a function of NaC1 concentration, temperature and the other variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Mysels and L. H. Princen, J. Phys. Chem. 63, 1696 (1959).

    Article  Google Scholar 

  2. E. Matijevic and B. A. Pethica Trans. Faraday Soc 54, 587 (1958).

    Article  Google Scholar 

  3. M. F. Emerson and A. Holzter, J. Phys. Chem 71, 1898 (1967).

    Article  PubMed  Google Scholar 

  4. W. Prins and J. J. Hermans, Proc. Kon. Ned. Akad. Wet., Ser. B, 67, 298 (1964).

    Google Scholar 

  5. H. F. Huisman, Ibid 67, 367, 376, 388, 407 (1964).

    Google Scholar 

  6. M. F. Emerson and A. Holtzer, J. Phys. Chem. 71, 3320 (1967).

    Article  PubMed  Google Scholar 

  7. N. A. Mazer, G. B. Benedek, and M. C. Carey, J. Phys. Chem. 80, 1075 (1976).

    Article  Google Scholar 

  8. N. A. Mazer, G. B. Benedek and M. C. Carey in “Micellization, Solubilization, and Microemulsions”, Vol. 1, K. L. Mittal, Ed., Plenum Press, New York, 1977, P. 359.

    Google Scholar 

  9. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem. 82, 1375 (1978).

    Article  Google Scholar 

  10. P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young, and M. C. Carey, J. Phys. Chem. 84, 1044 (1980).

    Article  Google Scholar 

  11. M. Corti and V. Degiorgio, Ann. Phys. 3, 303 (1978).

    Google Scholar 

  12. D. F. Nicoli, D. R. Dawson and H. W. Offen, Chem. Phys. Lett. 66, 291 (1979).

    Article  Google Scholar 

  13. G. S. Hartley, “Aqueous Solutions of Paraffin-Chain Sales,” Hermann and Cie., Paris, France, 1936, Chapter 7.

    Google Scholar 

  14. P. Debye and E. W. Anacker, J. Phys. Colloid Chem. 55, 644 (1951).

    Article  PubMed  Google Scholar 

  15. P. Mukerjee, J. Phys. Chem. 76, 565 (1972).

    Article  Google Scholar 

  16. R. Tausk and J. Th. G. Overbeek, Colloid Interface Sci., 2, 379 (1976).

    Google Scholar 

  17. J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, J. Chem. Soc., Faraday Trans., 72, 1525 (1976).

    Article  Google Scholar 

  18. C. Tanford, J. Phys. Chem. 78, 2469 (1974).

    Article  Google Scholar 

  19. P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, to be published.

    Google Scholar 

  20. J. A. Reynolds, D. B. Gilbert, and C. Tanford, Proc. Natl. Acad. Sci. U. S.A., 71, 2925 (1974).

    Article  PubMed  Google Scholar 

  21. P. Mukerjee, K. J. Mysels, and P. Kapauan, J. Phys. Chem. 71, 4166 (1967).

    Article  Google Scholar 

  22. R. C. Weast, Ed., “CRC Handbook of Chemistry and Physics,” 58th edition, CRC Press, Inc., Cleveland, Ohio, 1977, p. F-213.

    Google Scholar 

  23. B. Lindman, G. Lindblom, H. Wennerstrom and H. Gustavsson, same as reference 8, page 195. See also reference 21.

    Google Scholar 

  24. E. H. Grant, S. E. Keefe, and R. Shack, Adv. in Mol. Relax. Proc. 4, 217 (1972).

    Article  Google Scholar 

  25. H. Wennerstrom, (1980), personal communication. See his paper in this symposium.

    Google Scholar 

  26. N. A. Mazer, M. C. Carey, R. F. Kwasnick, and G. B. Benedek, Biochemistry 18, 3064 (1979).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Missel, P.J., Mazer, N.A., Carey, M.C., Benedek, G.B. (1982). Thermodynamics of the Sphere-to-Rod Transition in Alkyl Sulfate Micelles. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3491-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3491-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3493-4

  • Online ISBN: 978-1-4613-3491-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics