Skip to main content

Liquid and Solid Metal Embrittlement

  • Chapter
Atomistics of Fracture

Abstract

Low melting metals can interact with metallic substrates in several distinct ways that lead to premature fracture or surface degradation. The most spectacular, and widely studied, manifestation of metal-induced embrittlement (MIE) is the sudden fracture of stressed metals with little or no apparent inter-diffusion or chemical interaction. In this classical form of embrittlement, ductility is minimized at or near the melting point of the metallic surface film, and is then restored at some higher temperature, as shown in Fig. 1 for zinc embrittled by indium (1). Similar embrittlement may be noted when the surface film is solid, but the degree of embrittlement is reduced and then disappears as the temperature falls well below the melting point of the embrittler - 100°C or so in the case of lead on (or in) steel (2). Other manifestations of liquid metal embrittlement are connected with rapid penetration of the environment along grain boundaries (e.g. gallium on aluminum), by preferential chemical reactions (e.g. lithium on iron containing carbon or carbides), and by corrosion, perhaps aided by cavitation, in ferritic steel tubing containing mercury in a thermal gradient. In the latter case, failure of the component may occur either by thinning or ultimate penetration of the wall, or by mass transfer-caused plugging of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. F. Old and P. Travena, Met. Science, 13: 487 (1979).

    Article  Google Scholar 

  2. J. C. Lynn, W. R. Warke and P. Gordon, Mat. Sci. Eng., 18: 51 (1975).

    Article  Google Scholar 

  3. E. D. Shchukin, Yu V. Goryunov, N. V. Pertsov and L. S. Bryuk-hanova, Sov. Mat. Sci., 14: 341 (1978).

    Article  Google Scholar 

  4. D. Shchukin, L. S. Bryukhanova, Z. M. Polukarova and N. V. Pertsov, Fiz. Khim. Mekh. Mater., 12, 40 (1976).

    Google Scholar 

  5. N. S. Stoloff in Environment-Sensitive Fracture of Engineering Materials, Z. A. Foroulis, Ed., AIME, New York, NY, 486 (1979).

    Google Scholar 

  6. G. Herbsieb and W. Schwenk, Werk, und Korrosion, 28: 145 (1977).

    Article  Google Scholar 

  7. A. Shunk, Ph.D. Thesis, Illinois Inst, of Technology (1976).

    Google Scholar 

  8. H. Nichols and W. Rostoker, Acta Met., 8: 848 (1960)

    Article  Google Scholar 

  9. M. C. Roth, G. C. Weatherly and W. A. Miller, Acta Met., 28: 841 (1980).

    Article  Google Scholar 

  10. N. S. Stoloff and T. L. Johnston, Acta Met., 11: 251 (1963).

    Article  Google Scholar 

  11. N. S. Stoloff, R. G. Davies and T. L. Johnston in Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York, 613 (1966).

    Google Scholar 

  12. H. Cottrell, Trans. Met. Soc. AIME, 212: 192 (1958)

    Google Scholar 

  13. N. J. Petch in Fracture, Wiley, New York, 20 (1959).

    Google Scholar 

  14. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials, Wiley, New York, 268 (1967).

    Google Scholar 

  15. K. L. Johnson, N. N. Breyer and J. W. Dally, Proc. Conf. on Environmental Degradation of Engineering Materials, Blacksburg, VA, 91 (1977).

    Google Scholar 

  16. W. M. Robertson, Met. Trans., 1: 2607 (1970).

    Google Scholar 

  17. W. Rostoker, J. M. McCaughey and H. Markus, in Embrittlernent by Liquid Metals, Reinhold, New York (1960).

    Google Scholar 

  18. M. Preece and A. R. C. Westwood, Trans. ASM, 62: 418 (1969).

    Google Scholar 

  19. S. Tetelman and S. Kunz, in Proc. Int. Conf. on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, Unieux-Firminy, 359 (1977).

    Google Scholar 

  20. V. V. Popovich and I. G. Dmukhouskaya, Sov. Mat. Sci., 14: 365 (1978).

    Article  Google Scholar 

  21. R. C. Westwood and M. Kamdar, Phil. Mag., 8: 787 (1963).

    Article  ADS  Google Scholar 

  22. Gordon, Met. Trans. A, 9A: 267 (1978).

    Article  Google Scholar 

  23. N. A. Gjostein, in Diffusion, American Soc. for Metals, Metals Park, OH, 241 (1973).

    Google Scholar 

  24. M. J. Kelley and N. S. Stoloff, Met. Trans. A, 6A: 159 (1975).

    Article  Google Scholar 

  25. N. Engel, Powder Met. Bull., 7: 8 (1954).

    Google Scholar 

  26. L. Brewer, in High Strength Materials, V. F. Zackay, Ed., Wiley, New York, 12 (1975).

    Google Scholar 

  27. R. M. German, in The Metal Science of Stainless Steels, E. W. Collings and H. W. King, Eds., 41, AIME, New York, (1978).

    Google Scholar 

  28. J. H. Hildebrand and R. L. Scott, Solubility of Non-Electrolytes, 3rd Ed., Prentice Hall, Englewood Cliffs, NJ (1950).

    Google Scholar 

  29. A. Griffith, Trans. Roy. Soc. Lond., 221: 163 (1920).

    Article  ADS  Google Scholar 

  30. E. Orowan, Welding J., 34: 1575 (1955).

    Google Scholar 

  31. H. K. Birnbaum, in Environment-Sensitiv e Fracture of Engineering Materials, Z. A. Zoroulis, Ed., AIME, New York, NY, 326 (1979).

    Google Scholar 

  32. M. L. Jokl, V. Vitek and C. J. McMahon, Jr., Acta Met., 28: 1479 (1980).

    Article  Google Scholar 

  33. J. J. Gilman, Plasticity — Proc. Sec. Symp. on Naval Structural Mechanics, 43, Pergamon Press, New York (1960).

    Google Scholar 

  34. C.F. Old, in Fracture 1977, Proc. ICF4, D. M. R. Taplin, Ed., Waterloo, Canada, 2:331 (1977).

    Google Scholar 

  35. M. H. Kamdar, Prog. Mat. Sci., 15: 289 (1973).

    Article  Google Scholar 

  36. M. G. Nicholas and C. F. Old, J. Mat. Sci., 14: 1 (1979).

    Article  ADS  Google Scholar 

  37. F. Old and P. Travena, Met. Sci., 13: 591 (1979).

    Google Scholar 

  38. M. I. Chaevskii, Sov. Mat. Sci., 1: 433 (1965).

    Article  Google Scholar 

  39. C.F. Old and P. Travena, Proc. Third Int. Conf. on Mechanical Behavior of Materials 2, Pergamon Press, Oxford, 397 (1980).

    Google Scholar 

  40. G. M. Scamans and C. D. S. Tuck, Sec. Int. Cong, on Hydrogen in Metals, Paris, 1977, Pergamon Press, paper 4A–11.

    Google Scholar 

  41. J. J. Gilman, Discussion to ref. 19, p. 375.

    Google Scholar 

  42. N. Toropovskaya, Sov. Mat. Sci., 6: 324 (1970).

    Article  Google Scholar 

  43. R. A. Oriani, in Proc. Int. Conf. on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, Unieux- Firminy, 351 (1977).

    Google Scholar 

  44. F. A. Shunk and W. R. Warke, Scripta Met., 519 (1974).

    Google Scholar 

  45. P. Gordon, Illinois Inst, of Technology, unpublished (1981).

    Google Scholar 

  46. Y. Iwata, Y. Asayama and A. Sakamoto, J. Jap. Inst. Met., 21: 77 (1967).

    Google Scholar 

  47. J. V. Rinnovatore, J. D. Corrie and H. Markus, Trans. ASM, 59: 665 (1966).

    Google Scholar 

  48. L. S. Bryakhanova, I. A. Andreeva and V. I. Likhtman, Sov. Phys. Solid State, 3: 2025 (1962).

    Google Scholar 

  49. C. M. Preece and A. R. C. Westwood, in Fracture, Proc. Sec. Int. Conf. on Fracture, Chapman and Hall, London, 439 (1969).

    Google Scholar 

  50. A. Clark, R. Yeske and H. K. Birnbaum, Met. Trans. A, 11A: 1903 (1980).

    Article  Google Scholar 

  51. S. P. Lynch, Scripta Met., 13: 1051 (1977).

    Article  Google Scholar 

  52. S. P. Lynch, The Mechanism of Liquid Metal Embrittlement - Crack Growth in Aluminum Single Crystals, A.R.L. Mat. Report 102, Aeronautical Res. Labs, Melbourne, Australia (1977).

    Google Scholar 

  53. S. P. Lynch, Acta Met., 29: 325 (1981).

    Article  Google Scholar 

  54. S. P. Lynch and N. E. Ryan, Proc. Sec. Int. Cong, on Hydrogen in Metals, paper 3D12, Pergamon, Oxford (1977).

    Google Scholar 

  55. S. P. Lynch, in Fatigue Mechanisms, ASTM STP675, Amer. Soc. for Test, and Materials, Philadelphia, PA, 174 (1979).

    Google Scholar 

  56. M. A. Krishtal, Sov. Phys. Dokl., 15: 614 (1970).

    ADS  Google Scholar 

  57. H. Matsui, H. Kimura and S. Moriya, Proc. Fourth Int. Conf. on Strength of Metals and Alloys, 291 (1976).

    Google Scholar 

  58. H. Matsui, H. Kimura and S. Moriya, Mat. Sci. Eng., 40: 207 (1979).

    Article  Google Scholar 

  59. R. A. Oriani and P. H. Josephic, Met. Trans. A, 11A, 1809 (1890)

    Article  Google Scholar 

  60. J. A. Clum, Scripta Met., 9: 51 (1975).

    Article  Google Scholar 

  61. R. J. H. Wanhill, Corrosion, 29: 435 (1973).

    Google Scholar 

  62. W. R. Goggin and J. W. Moberly, Trans. ASM, 59: 315 (1966).

    Google Scholar 

  63. N. A. Tiner, Trans. Met. Soc. AIME, 221: 261 (1961).

    Google Scholar 

  64. S. Ashok, N. S. Stoloff, M. E. Glicksman and T. P. Slavin, Scripta Met., 15: 331 (1981).

    Article  Google Scholar 

  65. E. Glikman and Yu. V. Goryunov, Fiz. Khim Mekh. Mater., 14: 20 (1978).

    Google Scholar 

  66. E. E. Glikman, Yu. V. Goryunov, V. M. Demin and K. Yu. Sarychev Izv. Vyssh. Uchebn. Zaved. Fiz., 15 (1976).

    Google Scholar 

  67. S. K. Marya and G. Wyon, Scrlpta Met., 9: 1009 (1975).

    Article  Google Scholar 

  68. L. S. Soldachenkova, Sov. Mat. Sci., 11: 251 (1975).

    Article  Google Scholar 

  69. H.Nelson and D. P. Williams, Met. Trans., 1: 63 (1970).

    Google Scholar 

  70. M. Bernstein, Mat. Sci. Eng., 6: 1 (1970).

    Article  Google Scholar 

  71. S. P. Lynch, Proc. Fourth Int. Conf. on Fracture, D. M. R. Taplin, Ed., 2, Waterloo, Canada, 859 (1977).

    Google Scholar 

  72. N. N. Breyer and K. L. Johnson, J. Test, and Eval. 2: 471 (1974)

    Article  Google Scholar 

  73. Yoshino and C. J. McMahon, Jr., Met. Trans. A, 5A: 363 (1974)

    Google Scholar 

  74. N. M. Parikh, in Environment-Sensitive Mechanical Behavior, R. C. Westwood and N. S. Stoloff, Eds., Gordon and Breach New York, 563 (1966).

    Google Scholar 

  75. D. L. Hammon, S. K. DeWeese, D. K. Matlock and D. L. Olson, Closed Loop, 9: 3 (1979).

    Google Scholar 

  76. S. Ashok and N. S. Stoloff, unpublished.

    Google Scholar 

  77. R. E. Spencey, S. K. DeWeese, D. K. Matlok and D. L. Olson, Met. Trans. A, 11A: 1758 (1980).

    Article  Google Scholar 

  78. James and R. L. Knecht, Met. Trans. A, 6A: 109 (1975).

    Article  Google Scholar 

  79. L. Smith and G. J. Zeman, Closed Loop, 9: 12 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Stoloff, N.S. (1983). Liquid and Solid Metal Embrittlement. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics