Skip to main content

Mechanics of Fracture

  • Chapter
Book cover Atomistics of Fracture

Abstract

Calculations of the theoretical strengths of crystalline solids are usually based on idealised forms of atomic force-displacement curves, in which the force is defined as the differential with respect to distance of the inter-atomic or inter-ionic energy. The energy curve is similar to that for a diatomic molecule in that it represents the resultant of inter-atomic repulsions and attractions; the nature and strength of the attractive forces depending on the bond type: ionic, covalent, metallic, or Van der Waals. Differences in character between a lattice and a molecule occur at separations of order one lattice spacing, when Friedel oscillations in the screening charge cause the long range component of the interaction potential in the lattice to undergo a damped oscillation about zero. For small displacements, the atomic force/displacement curve is linear, having a slope equivalent to Young’s modulus, E. A lattice also has shear stiffness, denoted by the shear modulus μ. Both E and μ are defined macroscopically, usually for randomly-oriented polycrystals which are assumed to be isotropic. In single crystals, both the tensile stiffness and the shear stiffness vary with the orientation of the crystal with respect to the tensile axis and these variations can be substantial: in iron, for example, the minimum value of E is in the [100]direction (132 GPa at room temperature) and the maximum value is in the [111] direction (260 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirth J. and Lothe J. “Theory of Dislocations” McGraw-Hill (New York) 1968.

    Google Scholar 

  2. Nabarro F.R.N. “Theory of Crystal Dislocations” Oxford (Clarendon Press) 1967.

    Google Scholar 

  3. Cottrell A.H. “Theory of Crystal Dislocations” Blackie and Son Ltd. 1964.

    MATH  Google Scholar 

  4. Inglis N. Trans. Inst. Naval Arch. London 1913, 55, p. 219.

    Google Scholar 

  5. Griffith A.A. Phil Trans. Roy. Soc. 1920, A221, p. 163.

    ADS  Google Scholar 

  6. Irwin G. Trans. ASME Jnl. Appl. Mech. 1957, 24, p. 361.

    Google Scholar 

  7. Knott J.F. “Fundamentals of Fracture Mechanics” Butterworths (London) revised impression 1979.

    Google Scholar 

  8. Rooke D.P. and Cartwright D.J. “Compendium of Stress Intensity Factors” HMSO (London) 1976.

    Google Scholar 

  9. Nye J.F. “Physical Properties of Crystals” Oxford University Press 1972.

    Google Scholar 

  10. Marsh D. Proc. Roy. Soc. 1964, A282, p. 33 and Tube Investments Internal Report 1964 no.161.

    Article  ADS  Google Scholar 

  11. Kelly A., Tyson W. and Cottrell A.H. Phil. Mag. 1967, 15, p. 567.

    Article  ADS  Google Scholar 

  12. Rice J.R. and Thomson R. Phil. Mag. 1974, 29, p. 73.

    Article  ADS  Google Scholar 

  13. Encyclopaedia Brittanica 1950, 10, p.480.

    Google Scholar 

  14. Garrett G.G. and Knott J.F. Acta Met. 1975 23 p. 841.

    Article  Google Scholar 

  15. Cottrell A.H. Trans. Amer. Inst. Min. Metall. Petrol. Engrs. 1958 212 p. 192.

    Google Scholar 

  16. Ritchie R.O. and Knott J.F. Mat. Sci. and Eng. 1974, 14, p. 7.

    Article  Google Scholar 

  17. Cottrell A.H. Proc. Roy. Soc. 1963 A276 p. 1.

    Article  ADS  Google Scholar 

  18. Cottrell A.H. Tewksbury Symposium on Fracture, University of Melbourne 1963, p. 1.

    Google Scholar 

  19. Bilby B.A., Cottrell A.H. and Swinden K.H. Proc. Roy. Soc. 1963, A272, p. 304.

    Article  ADS  Google Scholar 

  20. Curry D.A., King J. E. and Knott J.F. Met. Sci. 1978, 12, p. 247.

    Google Scholar 

  21. Knott J.F. Phil. Trans. Roy. Soc. 1981, A299, p. 45.

    Article  ADS  Google Scholar 

  22. Ritchie R.O., Knott J.F. and Rice J.R. Jnl. Mech. Phys. Solids 1973, 21, p. 395.

    Article  ADS  Google Scholar 

  23. Curry D.A. Nature (London) 1978, 276, p.50.

    Article  ADS  Google Scholar 

  24. McMahon C.J. Jnr. and Cohen M. Acta Met. 1965, 13, p. 591.

    Article  Google Scholar 

  25. Smith E. Proc. Conf. on Physical Basis of Yield and Fracture, Inst. Phys. and Phys. Soc. Oxford 1966, p. 36.

    Google Scholar 

  26. Curry D.A. and Knott J.F. Met. Sci. 1978, 12, p. 511.

    Article  Google Scholar 

  27. Curry D.A. and Knott J.F. Met. Sci. 1979, 13, p. 341.

    Google Scholar 

  28. Evans A.G., Heuer A.H. and Porter D.L. Proc. 4th Intl. Cong. on Fracture, Waterloo, Pergamon 1978, 1, p.529.

    Google Scholar 

  29. Cottrell A.H. Symposium on the Relation Between the Structural and Mechanical Properties of Metals, Nat. Phys. Lab. HMSO (London) 1963, p. 456.

    Google Scholar 

  30. Tetelman A.S. and Robertson W.D. Acta Met. 1963, 11, p. 415.

    Article  Google Scholar 

  31. Jokl M.L., Kameda Jun, McMahon C. J. Jnr. and Vitek V. Met. Sci. 1980 14, p. 375.

    Google Scholar 

  32. Knott J.F. Proc. 4th Intl. Cong, on Fracture, Waterloo, Pergamon 1978, p. 61.

    Google Scholar 

  33. Smith E. Matl. Sci. Eng. 1981, 47, 133.

    Article  Google Scholar 

  34. Briant C.L. and Messmer R., Phil Mag B 42 p.569. (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Knott, J.F. (1983). Mechanics of Fracture. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics