Skip to main content

Bayes Quantile Estimation and Threshold Selection for the Generalized Pareto Family

  • Chapter
Extreme Value Theory and Applications

Abstract

There is always a trade off between computational and statistical efficiency. The phenomenal recent advances in computing have shifted the advantage toward Bayesian methods of estimation. We propose an interactive program for analyzing observations above a high threshold. The first phase of the analysis is the “identification” phase. Using parameter estimators which are not too efficient but easy to compute, we perform many iterations to find the empirical optimal combination choice of threshold and choice of monotone increasing function transformation. We review existing methods of estimation. The second phase is the “estimation” phase. We examine the use of Bayes estimators for this phase. We also suggest a method of finding confidence regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold B. C. and Press S. J., Bayesian analysis of censored or group data from Pareto populations, Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. (1986), 157–173.

    Google Scholar 

  2. Beirlant J. and Teugels J. K., The asymptotic behavior of Hill’s estimator, Ther. Prob. Appl. 31, (1986), 463–469.

    Article  MathSciNet  Google Scholar 

  3. Castillo E., Extreme Value Theory in Engineering., Academic Press, New York, (1987).

    Google Scholar 

  4. Csörgö S., Deheuvels P. and Mason D., Kernel estimates of the tail index of a distribution, Ann. Statist 13, (1985), 1050–77.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dargahi-Noubari G. R., On tail estimation, an improved method, Mathematical Geology. 21, (1989), 829–842.

    Article  Google Scholar 

  6. Dargahi-Noubari G. R., On distribution of large incomes, (1993), Submitted.

    Google Scholar 

  7. Davison A. C., Modeling excesses over high thresholds with an application, Statistical extremes and applications (eds.: J. Tiago de Oliveira ), Reidel, Dordrecht, (1984), pp 461–482.

    Google Scholar 

  8. Davison A. C. and Smith R. L., Models for exceedances over high thresholds (with comments), J. Royal Statist Soc. B. 52, (1990), 393–442.

    MATH  MathSciNet  Google Scholar 

  9. Deheuvels P., Almost sure convergence of the Hill estimator, Math. Proc. Cambridge Phil. Soc. 104, (1988), 371–381.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dekkers A. L. M. and de Haan L., On the estimation of the extreme value index and large quantile estimation, Ann. Statist. 17, (1989), 1795–1832.

    Article  MATH  MathSciNet  Google Scholar 

  11. Dekkers A. L. M., Einmahl H. J. and de Haan L., A moment estimator for the index of an extreme value distribution, Ann. Statist 17, (1989), 1833–55.

    Article  MATH  MathSciNet  Google Scholar 

  12. Galambos J., The asymptotic theory of extreme order statistics. 2ed., Robert E. Krieger Publishing Co., Malabar Fla., (1987).

    Google Scholar 

  13. Grimshaw S. D., A unification of tail estimators, Communications in Statistics. 19, (1990), 4841–57.

    Article  MATH  MathSciNet  Google Scholar 

  14. Grimshaw S. D., Computing maximum likelihood estimates for the Generalized Pareto distribution, Technometrics. 35, No. 2, (1993), 185–191.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gumbel E. J., Statistics of Extremes, Columbia Univ. Press, New York, (1958).

    MATH  Google Scholar 

  16. Haeusler E. and Teugels J. L., On asymptotic normality of Hill’s estimator for the exponent of regular variation, Ann. Statist 13, (1985), 743–756.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hartigan J. A., Bayes Theory, Springer Verlag, New York, (1983).

    Book  MATH  Google Scholar 

  18. Hill B. M., A simple general approach to inference about the tail of a distribution, Ann. Statist 3, (1975), 1163–1179.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hosking J. R. M. and Wailis J. R., Parameter and quantile estimation for the generalized Pareto distribution, Technometrics. 29, (1987), 339–349.

    Article  MATH  MathSciNet  Google Scholar 

  20. Joe H., Estimation of the quantiles of the maximum of N observations, Biornetrika. 71 (1987), 347–354.

    MathSciNet  Google Scholar 

  21. Leadbetter M. R., Lindgren G. and Rootzen H., Extremes and related properties of the random sequences and processes, Springer, New York, (1983).

    Book  Google Scholar 

  22. Pickands J. III, Statistical inference using extreme order statistics, Ann. Statist 3, (1975), 119–131.

    Article  MATH  MathSciNet  Google Scholar 

  23. Pickands J. III, Spline and isotonic estimation of the Pareto function, In: Statistical Extremes and Applications Proceedings of the NATO symposium on extreme values (eds.: J. Tiago de Oliveira ), Reindel Publ. Co., (1984), pp 285–296.

    Google Scholar 

  24. Pickands J. III, The continuous and differentiate domains of attraction of the extreme value distributions, Ann. Probab. Vol. 14, No. 5, (1986), 996–1004.

    Google Scholar 

  25. Ross W. H., A peaks over threshold analysis of extreme wind speeds, Canadian J. Statist 15, (1987), 328–335.

    Article  Google Scholar 

  26. Smith J. A., Estimating the upper tail of flood frequency distributions, Water Resources Research, Amer. Geophysical Research. 23, (1987), 1657–66.

    Google Scholar 

  27. Smith R. L., Maximum likelihood estimation in a class of nonregular cases, Biornetrika 72, (1985), 67–90.

    MATH  Google Scholar 

  28. Smith R. L., Estimating tails of probability distributions, Ann. Statist. 15, (1987), 1174–1207.

    Article  MATH  MathSciNet  Google Scholar 

  29. Smith R. L. and Naylor J. C., A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution, Appl. Statist. 36, (1987), 359–369.

    MathSciNet  Google Scholar 

  30. Smith R. L. and Weissman I., Maximum likelihood estimator of the lower tail of a probability distribution, Journal of the Royal Statistical Society, Ser. B 47, (1985), 285–298.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pickands, J. (1994). Bayes Quantile Estimation and Threshold Selection for the Generalized Pareto Family. In: Galambos, J., Lechner, J., Simiu, E. (eds) Extreme Value Theory and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3638-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3638-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3640-2

  • Online ISBN: 978-1-4613-3638-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics