Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 94))

Abstract

An ultimate limit to the sensitivity achieved by detectors for gravitational radiation is set by quantum fluctuations. All detection systems are subject to this limit, however we shall restrict our attention to the affect of quantum fluctuations on optical detection systems such as the Michelson interferometer. The techniques developed to treat quantum fluctuations in optical systems may prove to be useful in analysing other detection systems. In a Michelson interferometer quantum fluctuations may affect the final measurement in two ways; namely photon counting fluctuations and radiation pressure fluctuations. The effect of these sources of error oil the interferometer detection scheme have been discussed by Caves and by Unruh. Caves suggested that these errors could be reduced by injecting special states of the radiation field with reduced fluctuations into one port of the interferometer. These states called “squeezed states” show reduced fluctuations in one quadrature and enhanced fluctuations in the other4–8. They also play a general role in quantum non demolition (Q.N.D.) measurements9 since the state of a system after certain Q.N.D. measurements (back action evading measurements) resembles a squeezed state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Caves, Phys.Rev.Letters, 45: 75 (1980).

    Article  ADS  Google Scholar 

  2. W. G. Unruh, in “Gravitational Radiation, Collapsed Objects and Exact Solutions,” C. Edwards, Springer, Berlin (1980).

    Google Scholar 

  3. C.M. Caves, Phys.Rev., 23D: 1693 (1981).

    ADS  Google Scholar 

  4. D.W. Robinson, Comm.Math.Phys., 1: 159 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  5. D.Stoler, Phys.Rev., D1:3217 (1970).

    ADS  Google Scholar 

  6. D.Stoler, Phys.Rev., D4:1925 (1971).

    ADS  Google Scholar 

  7. D.Stoler, Phys.Rev., 23: 1397 (1974).

    Google Scholar 

  8. E.Y.C. Lu, Lett.Nuovo.Cimento, 2:1241 (1971).

    Article  Google Scholar 

  9. E.Y.C. Lu, Lett.Nuovo.Cimento, 2: 585 (1972).

    Article  Google Scholar 

  10. H. P. Yuen, Phys.Lett., 51A:1 (1975).

    ADS  Google Scholar 

  11. H. P. Yuen, Phys.Rev., A13: 2226 (1976).

    ADS  Google Scholar 

  12. H. N. Hollenhorst, Phys.Rev., D19: 1669 (1979).

    ADS  Google Scholar 

  13. See V. B. Braginsky, Y. I. Vorontsov and K. S. Thorne inScience, 209:547 (1980) and references contained therein.

    Article  ADS  Google Scholar 

  14. H. J. Carmichael and D. F. Walls, J.Phys., 9B: L43: 1199 (1976).

    MathSciNet  ADS  Google Scholar 

  15. H.J. Kimble, M. Dagenais and L. Mandel, Phys.Rev.Lett., 39:691 (1977).

    Article  ADS  Google Scholar 

  16. H.J. Kimble, M. Dagenais and L. Mandel, Phys.Rev. 18A:201 (1978).

    ADS  Google Scholar 

  17. M. Dagenais and L. Mandel, Phys.Rev., 18A: 2217 (1978).

    ADS  Google Scholar 

  18. G. Leuchs, M. Rateike and H. Walther, (private communication).

    Google Scholar 

  19. D. F. Walls and P. Zoller, Phys. Rev. Letters 47: 709 (1981).

    Article  ADS  Google Scholar 

  20. H. Takahashi, Adv.Comm.System, 1: 227 (1965).

    Google Scholar 

  21. R. J. Glauber, Phys.Rev., 130:2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  22. R. J. Glauber, Phys.Rev., 131: 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  23. E.C.G. Sudarshan, Phys. Rev. Letters 10: 277 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. R. Klauder and E.C.G. Sudarshan, “Fundamentals of Quantum Optics,” Benjamin, New York, (1968).

    Google Scholar 

  25. For a review and list of references see D. F. Walls, Nature, 280: 451 (1979).

    Article  ADS  Google Scholar 

  26. See for example W. H. Louisell, “Quantum Statistical Properties of Radiation,” Wiley, New York, (1973).

    Google Scholar 

  27. R. R. Puri and S. V. Lawande, Physics Letters, 72A: 200 (1979).

    MathSciNet  ADS  Google Scholar 

  28. P. D. Drummond, Phys.Rev., 22A:1179 (1980).

    ADS  Google Scholar 

  29. H. J. Carmichael, J.Phys., 13B: 3551 (1980).

    ADS  Google Scholar 

  30. G. S. Agarwal, Springer Tracts in Modern Physics, Vol.70, Springer (1974).

    Google Scholar 

  31. C. Cohen Tannoudji in “Frontiers in Laser Spectroscopy,” R. Balian, S. Haroche and S. Liberman, North Holland, (1977).

    Google Scholar 

  32. H. J. Kimble and L. Mandel, Phys.Rev., A13: 2123 (1976).

    Article  ADS  Google Scholar 

  33. E. P. Wigner, Phys.Rev., 40: 249 (1932).

    Article  ADS  Google Scholar 

  34. P. D. Drummond and C. W. Gardiner, J.Phys., 13A: 2353 (1980).

    MathSciNet  ADS  Google Scholar 

  35. R. Graham in “Springer Tracts in Modern Physics”, Vol.66, Springer, (1973).

    Google Scholar 

  36. H. Haken, Rev.Mod.Phys., 47: 67 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  37. P. D. Drummond and D. F. Walls, J.Phys., A13: 725 (1980).

    ADS  Google Scholar 

  38. M. D. Srinivas and E. Wolf, in “Statistical Mechanics and Statistical Methods in Theory and Application,” U. Landman, Plenum, New York (1977).

    Google Scholar 

  39. R. F. Pawula, Phys.Rev., 162: 186 (1967).

    Article  ADS  Google Scholar 

  40. H. Takahashi, Adv.Comm.System., 1: 227 (1965).

    Google Scholar 

  41. H. P. Yuen and J. H. Shapiro, Opt. Lett., 4: 334 (1979).

    Article  ADS  Google Scholar 

  42. P. D. Drummond, K. J. McNeil and D. F. Walls, Optica.Acta, 28: 211 (1981).

    Article  ADS  Google Scholar 

  43. G. Milburn and D. F. Walls, submitted to Optics.Comm.

    Google Scholar 

  44. C. W. Gardiner, A Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer Verlag, (to be published 1982 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Walls, D.F., Milburn, G.J. (1983). Quantum Fluctuations in Nonlinear Optics. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravity, and Measurement Theory. NATO Advanced Science Institutes Series, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3712-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3712-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3714-0

  • Online ISBN: 978-1-4613-3712-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics