Skip to main content

High-Sensitivity Differential Scanning Calorimetry in the Study of Biomembranes and Related Model Systems

  • Chapter
Methods in Membrane Biology

Abstract

Differential scanning calorimetry (DSC) currently finds wide application in studies of the thermotropic behavior of lipids in biological membranes and related systems (Chapman, 1975a,b; Scheidler and Steim, 1975). Almost without exception these studies have employed calorimetric equipment which is limited to very small sample sizes and relatively high scan rates, so that only low sensitivity is realized with the aqueous solutions and suspensions which are of interest in biology. The recent development of scanning calorimeters especially adapted for applications involving relatively dilute solutions and suspensions (Gill and Beck, 1965; Tsong et al., 1970; Jackson and Brandts, 1970; Ross and Goldberg, 1974; Grubert and Ackermann, 1974; Privalov et al., 1975; and Suurkuusk et al., 1976) opens up the possibility of more searching and quantitative studies of these systems. The present chapter outlines the fundamental principles of DSC, and discusses several recent applications of high-sensitivity DSC to membranes and related systems, with particular reference to the most highly developed scanning calorimeter currently available, the one designed by Privalov (Privalov et al., 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldassare, J. J., Rhinehart, K. B., and Silbert, D. F., 1976, Modification of membrane lipid. Physical properties in relation to fatty acid structure, Biochemistry 15:2986–2994.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A. D., 1972, Model membranes, Chem. Phys. Lipids 8:386–392.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A. D., and Home, R. W., 1964, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope, J. Mol. Biol. 8:660–668.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A. D., De Gier, J., and Greville, G. D., 1967, Osmotic properties and water permeability of phospholipid liquid crystals, Chem. Phys. Lipids 1:225–246.

    Article  CAS  Google Scholar 

  • Barenholz, Y., Suurkuusk, J., Mountcastle, D., Thompson, T. E., and Biltonen, R. L., 1976, A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins, Biochemistry 15:2441–2447.

    Article  PubMed  CAS  Google Scholar 

  • Barton, P. G., 1976, Phase transitions of sterols and sterol-lecithin mixtures, Chem. Phys. Lipids 16:195–200.

    Article  CAS  Google Scholar 

  • Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737–741.

    Article  PubMed  CAS  Google Scholar 

  • Brandts, J. F., Traverno, R. D., and Lysko, K., 1976, Calorimetric evidence suggesting the presence of some crystalline phospholipid regions of the human erythrocyte membranes, Fed. Proc. 35:1431.

    Google Scholar 

  • Bystrov, V. F., Dubrovina, N. I., Barsukov, L. I., and Bergelson, L. D., 1971, NMR differentiation of the internal and external phospholipid membrane surfaces using paramagnetic Mn2+ and Eu3+ ions, Chem. Phys. Lipids 3:343–350.

    Article  Google Scholar 

  • Chapman, D., 1975a, Fluidity and phase transitions of cell membranes, in: Biomembranes, Vol. 7 (H. Eisenberg, E. Katchalski-Katzir, and L. A. Manson, eds.), pp. 1–9, Plenum Press, New York.

    Google Scholar 

  • Chapman, D., 1975b, Phase transitions and fluidity characteristics of lipids and cell membranes, Ann. Rev. Biophvs. 8:185–235.

    CAS  Google Scholar 

  • Chapman, D., and Dodd, E. I., 1971. Physical studies of membrane systems, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 13–81, Academic Press, Inc., New York.

    Google Scholar 

  • Chapman, D., Williams, R. M., and Ladbrooke, B. D., 1967, Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1, 2-diacylphosphatidylcholines (lecithins), Chem. Phys. Lipids 1:445–475.

    Article  CAS  Google Scholar 

  • Chapman, D., Urbina, J., and Keough, K. M., 1974, Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512–2521.

    PubMed  CAS  Google Scholar 

  • Cogan, U., Shinitzky, M., Weber, G., and Hishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., and De Kruijff, B., 1976, 31P-NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, pH, and divalent cations on the motion of the phosphate region of the polar headgroup, Biochim. Biophys. Acta 436:523–540.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., De Kruijff, B., and Richards, R. E., 1976, Factors affecting the motion of the polar headgroups in phospholipid bilayers. A 31P-NMR study of unsonicated phosphatidylcholine liposomes, Biochim. Biophys. Acta 426:443–446.

    Google Scholar 

  • Danielli, J. F., and Davson, H., 1935, The permeability of thin films, J. Cell. Comp. Physiol. 5:495–508.

    Article  CAS  Google Scholar 

  • Darke, A., Finer, E. G., Flook, A. G., and Phillips, M. C., 1972, Nuclear magnetic resonance study of lecithin-cholesterol interactions, J. Mol. Biol. 63: 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224–241.

    Article  PubMed  CAS  Google Scholar 

  • De Kruijff, B., Demel, B. A., and Van Deenan, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes, Biochim. Biophys. Acta 255:331–347.

    Article  Google Scholar 

  • De Kruijff, B., Demel, R. A., Slotboom, A. J., Van Deenan, L. L. M., and Rosenthal, A. F., 1973. The effect of the polar headgroup on the lipid-cholesterol interaction: a monolayer and differential scanning calorimetry study, Biochim. Biophys. Acta 307:1–19.

    Article  Google Scholar 

  • De Kruijff, B., Cullis, P. R., and Radda, G. K., 1975, Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes, Biochim. Biophys. Acta 406:6–20.

    Article  PubMed  Google Scholar 

  • Dervichian, D. G., 1964, The physical chemistry of phospholipids, Progr. Biophys. Mol. Biol. 14:263–342.

    Article  CAS  Google Scholar 

  • Eliasz, A. W., Chapman, D., and Ewing, D. F., 1976, Phospholipid phase transitions. Effects of n-alcohols, n-monocarboxylic acids, phenyl alkyl alcohols, and quaternary ammonium compounds, Biochim. Biophys. Acta 448:220–233.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1970, X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii, J. Mol. Biol. 47:115–177.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1971, Lipid bilayer structure in the membrane of Mycoplasma laidlawii, J. Mol. Biol. 58:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1972, The molecular structure of Acholeplasma laidlawii, Chem. Phys. Lipids 8:298–302.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1975, The use of x-ray scattering in the study of lipid bilayer planar organization, Biophys. J. 15:940–944.

    Article  PubMed  CAS  Google Scholar 

  • Erdee, L., Csorba, I., and Thuyen, H. X., 1975, Simple rapid method for detecting phase transitions of lipids, Lipids 10:115–117.

    Article  Google Scholar 

  • Faucon, J. F., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence. Biochim. Biophys. Acta 307:459–466.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, S., and Packer, L., eds., 1974, Biomembranes, Part B, Vol. 23 in Methods in Enzymology, pp. 161–272, Academic Press, Inc., New York.

    Google Scholar 

  • Gaffney, B. J., and Chen, S.-C., 1977, Spin label studies of membranes, in Methods in Membrane Biology Vol. 8, (E. D. Korn, ed.), pp. 291–358, Plenum Press, New York.

    Google Scholar 

  • Galla, H.-J. and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes, Biochim. Biophys. Acta 339:103–115.

    Article  PubMed  CAS  Google Scholar 

  • Gaily, H., Niederberger, W., and Seelig, J., 1975, Conformation and motion of the choline headgroup in bilayers of dipalmitoyl-3-sn-phosphatidylcholine, Biochemistry 14: 3647–3652.

    Article  Google Scholar 

  • Gill, S. J., and Beck, K., 1965, Differential heat capacity calorimeter for polymer transition studies, Rev. Sci. Instr. 36:274–276.

    Article  CAS  Google Scholar 

  • Goldberg, R. N., and Prosen, E. J., 1973, Evaluation of heats of transition in scanning calorimetry, Thermochim. Acta 6:1–11.

    Article  CAS  Google Scholar 

  • Grubert, M., and Ackermann, Th., 1974, Elin empfindliches adiabatisches differenzkalorimeter zur undersuchung kooperativer Strukturumwandlungen in Losüngen, Z. Phys. Chem. 93:255–264.

    Article  CAS  Google Scholar 

  • Hackenbrock, C. R., Höchli, M., and Chau, R. M., 1976, Calorimetric and freeze-fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes, Biochim. Biophys. Acta 455:466–484.

    Article  PubMed  CAS  Google Scholar 

  • Haest, C. W. M., Verkleij, A. J., De Gret, J., Scheek, R., Ververgaert, P. H. J., and Van Deenan, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Hinz, H.-J., and Sturtevant, J. M., 1972a, Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L-a-lecithins in aqueous suspensions, J. Biol. Chem. 247:3697–3700.

    PubMed  CAS  Google Scholar 

  • Hinz, H.-J., and Sturtevant, J. M., 1972b, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-a-lecithins, J. Biol. Chem. 247: 6071–6075.

    PubMed  CAS  Google Scholar 

  • Huang, C., 1969, Studies of phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8:344–352.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, R., 1959, The thermal stability of rhodopsin and opsin, J. Gen. Physiol. 42:259–279.

    Article  Google Scholar 

  • Hubbell, W. L., and McConnell, H. M., 1971, Molecular motion in spin-labelled phospholipids and membranes, J. Amer. Chem. Soc. 93:314–326.

    Article  CAS  Google Scholar 

  • Jackson, M. B., 1976a, A β-coupled gauche kink description of the lipid bilayer phase transition, Biochemistry 15:2555–2561.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B., 1976b, Differential scanning calorimetry of E. coli lipids and membranes, Fed. Proc. 35:1531.

    Google Scholar 

  • Jackson, W. M., and Brandts, J. F., 1970, Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation, Biochemistry 9:2294–2301.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, W. M., Kostyla, J., Nordin, J. H., and Brandts, J. F., 1973, Calorimetric study of protein transitions in human erythrocyte ghosts, Biochemistry 12:3662–3667.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, R. E., Hudson, B., and Andersen, H. C., 1975, A theory of the chain melting phase transition of aqueous phospholipid dispersions, Proc. Nat. Acad. Sci. U.S. 72:3993–3997.

    Article  CAS  Google Scholar 

  • Jacobson, K., and Papahadjopoulos, D., 1975, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH and concentration of bivalent cations, Biochemistry 14:152–161.

    Article  PubMed  CAS  Google Scholar 

  • Janiak, M. J., Small, D. M., and G. G. Shipley, 1976, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin, Biochemistry 15: 4575–4580.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. M., Bangham, A. D., Hill, M. W., and Korn, E. D., 1971, Single bilayer liposomes, Biochim. Biophys. Acta 233:820–826.

    Article  PubMed  CAS  Google Scholar 

  • Kantor, H. L., and Prestegard, J. H., 1957, Fusion of fatty acid containing lecithin vesicles, Biochemistry 14:1790–1795.

    Article  Google Scholar 

  • Kantor, H. L., Mabrey, S., Prestegard, J. H., and Sturtevant, J. M., 1977, A calorimetric examination of stable and fusing lipid bilayer vesicles, Biochim. Biophys. Acta 446: 402–410.

    Google Scholar 

  • Kleeman, W., and McConnell, H. M., 1974, Lateral phase separation in Escherichia coli membranes, Biochim. Biophys. Acta 345:220–230.

    Article  Google Scholar 

  • Klopfenstein, W. E., De Kruijff, B., Verkleij, A. J., Demel, R. A., and Van Deenan, L. L. M., 1974, Differential scanning calorimetry on mixtures of lecithin, lysolecithin and cholesterol, Chem. Phys. Lipids 13:215–222.

    Article  CAS  Google Scholar 

  • Ladbrooke, B. D., and Chapman, D., 1969, Thermal analysis of lipids, proteins and biological membranes, Chem. Phys. Lipids 3:304–367.

    Article  PubMed  CAS  Google Scholar 

  • Ladbrooke, B. D., Jenkinson, T. J., Kamat, V. B., and Chapman, D., 1968a, Physical studies of myelin. I. Thermal analysis, Biochim. Biophys. Acta 164:101–109.

    PubMed  CAS  Google Scholar 

  • Ladbrooke, B. D., Williams, R. M., and Chapman, D., 1968b, Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and x-ray diffraction, Biochim. Biophys. Acta 150:333–340.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., Ralph, E. K., and Redfield, A. G., 1975, Observation of the phosphatidyl ethanolamine amino proton magnetic resonance in phospholipid vesicles: inside/outside ratios and proton transport, Biochem. Biophys. Res. Commun. 62:891–894.

    Article  PubMed  CAS  Google Scholar 

  • Lecuyer, H., and Dervichian, D. G., 1969, Structure of aqueous mixtures of lecithin and cholesterol, J. Mol. Biol. 45:39–57.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., 1975a, Functional properties of biological membranes: a physical-chemical approach, Progr. Biophys. Mol. Biol. 28:3–56.

    Google Scholar 

  • Lee, A. G., 1975b, Fluorescence studies of chlorophyll a incorporated into lipid mixtures and the interpretations of phase diagrams, Biochim. Biophys. Acta 413:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., 1975c, Segregation of chlorophyll a incorporated into lipid bilayers, Biochemistry 14:4397–4402.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Levine, Y. K., and Metcalfe, J. C., 1972, High resolution proton relaxation studies of lecithins, Biochim. Biophys. Acta 255:43–56.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699–3705.

    Article  PubMed  CAS  Google Scholar 

  • Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976a, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes, Biochemistry 15:4521–4528.

    Article  PubMed  CAS  Google Scholar 

  • Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976b, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. II. Two-component phosphatidylcholine liposomes, Biochemistry 15:4529–4537.

    Article  PubMed  CAS  Google Scholar 

  • Levine, Y. K., 1973, X-ray diffraction studies of membranes, Progr. Surface Sci. 3:279–352.

    Article  CAS  Google Scholar 

  • Lippert, J. L., and Peticolas, W. L., 1971, Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers, Proc. Nat. Acad. Sci. U.S. 68:1572–1576.

    Article  CAS  Google Scholar 

  • Lippert, J. L., and Peticolas, W. L., 1972, Raman active vibrations in long chain fatty acids and phospholipid sonicates, Biochim. Biophys. Acts 282:8–17.

    Article  CAS  Google Scholar 

  • Lis, L. J., Coheen, S. C., Kauffman, J. W., and Shriver, D. F., 1976a, Laser Raman spectroscopy of lipid-protein systems. Differences in the effect of intrinsic and extrinsic proteins on the phosphatidylcholine Raman spectrum, Biochim. Biophys. Acta 443:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Lis, L. J., Kauffman, J. W., and Shriver, D. F., 1976b, Raman spectroscopic detection and examination of the interaction of amino acids, polypeptides and proteins with the phosphatidylcholine lamellar structure, Biochim. Biophys. Acta 436:513–522.

    Article  PubMed  CAS  Google Scholar 

  • Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems in biological membranes, in: Biological Membranes (D. Chapman, ed.), p. 71, Academic Press, Inc., New York.

    Google Scholar 

  • Mabrey, S., and Sturtevant, J. M., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry, Proc. Nat. Acad. Sci. U.S. 73:3862–3866.

    Article  CAS  Google Scholar 

  • Mabrey, S., and Sturtevant, J. M., 1977, Incorporation of saturated fatty acids into phosphatidylcholine bilayers, Biochim. Biophys. Acta 486:444–450.

    PubMed  CAS  Google Scholar 

  • Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1977a, Differential scanning calorimetry of lecithin-cholesterol mixtures, Biophys. J. 17:82a.

    Google Scholar 

  • Mabrey, S., Powis, G., Schenkman, J. B., and Tritton, T. R., 1977b, A calorimetric study of the microsomal membrane, J. Biol. Chem. 252:2929–2933.

    PubMed  CAS  Google Scholar 

  • Marsh, D., 1974, Interacting spin label study of lateral expansion in dipalmitoyl lecithin-cholesterol bilayers, Biochim. Biophys. Acta 363:373–386.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. M., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145–157.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., and Morowitz, H. J., 1972, Dilatometry of dilute suspensions of synthetic lecithin aggregates, Biochemistry 11:4558–4562.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., and Steim, J. M., 1976, Thermotropic transitions in biomembranes, Ann. Rev. Biophys. Bioeng. 5:205–238.

    Article  CAS  Google Scholar 

  • Melchior, D. L., Morowitz, H. J., Sturtevant, J. M., and Tsong, T. Y., 1970, Characterization of the plasma membrane of Mycoplasma laidlawii. VI. Phase transitions of membrane lipids, Biochim. Biophys. Acta 219:114–122.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., Scavitto, F. J., Walsh, M. T., and Steim, J. M., 1977, Thermal techniques in biomembrane and lipoprotein research, Thermochim. Acta 18:43–71.

    Article  CAS  Google Scholar 

  • Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1974, Head group modulation of membrane fluidity in sonicated phospholipid dispersions, Biochemistry 13:2605–2612.

    Article  PubMed  CAS  Google Scholar 

  • Miljanich, G., Brown, M. F., Dratz, E. A., Mabrey, S., and Sturtevant, J. M., 1976, Differential scanning calorimetry of bovine rod outer segment membranes and total phospholipids, Biophys. J. 16:37a.

    Google Scholar 

  • Nagle, J. F., 1973a, Theory of biomembrane phase transitions, J. Chem. Phys. 58:252–264.

    Article  CAS  Google Scholar 

  • Nagle, J. F., 1973b, Lipid bilayer phase transition: density measurements and theory, Proc. Nat. Acad. Sci. U.S. 70:3443–3444.

    Article  CAS  Google Scholar 

  • Nagle, J. F., 1976, Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions, J. Membrane Biol. 27:233–250.

    Article  CAS  Google Scholar 

  • Noonan, K. D., and Burger, M. M., 1973, Relation of concanavalin A binding to lectininitiated cell agglutination, J. Cell Biol. 59:134–142.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: heterogeneity and the role of cholesterol, Fed. Eur. Biochem. Soc. Letters 23:285–297.

    Article  CAS  Google Scholar 

  • Op den Kamp, J. A. F., Kauerz, M. Th., and Van Deenan, L. L. M., 1975, Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states, Biochim. Biophys. Acta 406:169–177.

    Article  Google Scholar 

  • Overath, P., and Träuble, H., 1973, Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry, Biochemistry 12:2625–2634.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R. E., Cherry, R. J., and Chapman, D., 1973, Phase transitions and heterogeneity in lipid bilayers, Science 181:557–559.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., and Kimelberg, H. K., 1973, Phospholipid vesicles (liposomes) as models for biological membranes: their properties and interactions with cholesterol and proteins, in: Progress in Surface Science (S. G. Davison, ed., Vol. 4, pp. 139–221, Pergamon Press, New York.

    Google Scholar 

  • Papahadjopoulos, D., and Poste, G., 1975, Calcium-induced phase separation and fusion in phospholipid membranes, Biophysical J. 15:945–948.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., and Watkins, J. C., 1967, Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals, Biochim. Biophys. Acta 135: 639–652.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nvi, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles. Fluorescence polarization and permeation measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311: 330–348.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Mayhew, E., Poste, G., Smith, S., and Vail, W. J., 1974, Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behavior, Nature 252:163–165.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Hui, S., Vail, W. J., and Poste, G., 1976a, Studies on membrane fusion. I. Interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide, Biochim. Biophys. Acta 448: 245–264.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976b, Studies on membrane fusion. II. Introduction of fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448:265–283.

    Article  PubMed  CAS  Google Scholar 

  • Papermaster, D. S., and Dreyer, W. J., 1974, Rhodopsin content in the outer segment membranes of bovine and frog retinal rods, Biochemistry 13:2438–2444.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M. C., and Finer, E. G., 1974, The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes, Biochim. Biophys. Acta 356:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M. C., Williams, R. M., and Chapman, D., 1969, On the nature of hydrocarbon chain motions in lipid liquid crystals, Chem. Phys. Lipids 3:234–244.

    Article  CAS  Google Scholar 

  • Phillips, M. C., Ladbrooke, B. D., and Chapman, D., 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta 193: 35–44.

    Google Scholar 

  • Phillips, M. C., Finer, E. G., and Hauser, H., 1972, Differences between conformations of lecithin and phosphatidyl ethanolamine polar gruops and their effects on interactions of phospholipid bilayer membranes, Biochim. Biophys. Acta 290:397–402.

    Article  PubMed  CAS  Google Scholar 

  • Poznansky, M., and Lange, Y., 1976, Transbilayer movement of cholesterol in dipalmitoyllecithin cholesterol vesicles, Nature 259:420–421.

    Article  PubMed  CAS  Google Scholar 

  • Privalov, P. L., and Khechinashvili, N. N., 1974, A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study, J. Mol. Biol. 86:665–684.

    Article  PubMed  CAS  Google Scholar 

  • Privalov, P. L., Plotnikov, V. V., and Filimonov, V. V., 1975, Precision scanning microcalorimeter for the study of lipids, J. Chem. Thermodyn. 7:41–47.

    Article  CAS  Google Scholar 

  • Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249:662–663.

    PubMed  CAS  Google Scholar 

  • Ranck, J. L., Mateu, L., Sadler, D. M., Tardieu, A., Gluick-Krzywicki, T., and Luzzati, V., 1974, Order-disorder transitions of the hydrocarbon chains of lipids, J. Mol. Biol. 85:249–277.

    Article  PubMed  CAS  Google Scholar 

  • Reinert, J. C., and Steim, J. M., 1970, Calorimetric detection of a membrane-lipid phase transition in living cells, Science 168:1580–1582.

    Article  PubMed  CAS  Google Scholar 

  • Ross, P. D., and Goldberg, R. N., 1974, A scanning microcalorimeter for thermally induced transitions in solution, Thermochim. Acta 10:143–151.

    Article  CAS  Google Scholar 

  • Salsbury, N. J., Darke, A., and Chapman, D., 1972, Deuteron magnetic resonance studies of water associated with phospholipids, Chem. Phys. Lipids 8:142–151.

    Article  PubMed  CAS  Google Scholar 

  • Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum, Proc. Nat. Acad. Sci. U.S. 69: 2056–2060.

    Article  CAS  Google Scholar 

  • Scheidler, P. J., and Steim, J. M., 1975, Differential scanning calorimetry of biological membranes, in: Methods in Membrane Biology (E. D. Korn, ed.), Vol. 4, pp. 77–96, Plenum Press, New York.

    Google Scholar 

  • Schreier-Muccillo, S., Marsh, D., Dugas, H., Schneider, H., and Smith, I. C. P., 1973, A spin probe study of the influence of cholesterol on motion and orientation of phospholipids in oriented multibilayers and vesicles, Chem. Phys. Lipids 10:11–17.

    Article  PubMed  CAS  Google Scholar 

  • Sears, B., Hutton, W. C., and Thompson, T. E., 1976, Effects of paramagnetic shift reagents on the 13C nuclear magnetic resonance spectra of egg phosphatidylcholine enriched with 13C in the M-methyl carbons, Biochemistry 15:1635–1639.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Chan, S. I., 1972, Effect of sonication on the structure of lecithin bilayers, Biochemistry 11:4573–4581.

    Article  PubMed  CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973a, Lateral phase separation in phospholipid membranes, Biochemistry 12:2351–2360.

    Article  PubMed  CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973b, Lateral phase separation in binary mixtures of cholesterol and phospholipids, Biochem. Biophys. Res. Commun. 53:446–448.

    Article  PubMed  CAS  Google Scholar 

  • Silbert, D. F., 1975, Genetic modification of membrane lipid, Ann. Rev. Biochem. 44: 315–339.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  • Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene fatty acids as membrane probes: preliminary characterization, Proc. Nat. Acad. Sci. U.S. 72:1649–1653.

    Article  CAS  Google Scholar 

  • Soutar, A. K., Pownall, H. J., Hu, A. S., and Smith, L. C., 1974, Phase transitions in bilamellar vesicles. Measurements by pyrene excimer fluorescence and effect on transacylation by lecithin: cholesterol acyl-transferase, Biochemistry 13:2828–2836.

    Article  PubMed  CAS  Google Scholar 

  • Spiker, R. L., and Levin, I. W., 1976a, Phase transitions of phospholipid single-wall vesicles and multilayers. Measurement by vibrational Raman spectroscopic frequency differences, Biochim. Biophys. Acta 433:457–468.

    Article  PubMed  CAS  Google Scholar 

  • Spiker, R. L., and Levin, I. W., 1976b, Effect of bilayer curvature on vibrational Raman spectroscopic behavior of phospholipid-water assemblies, Biochim. Biophys. Acta 455:560–575.

    Article  PubMed  CAS  Google Scholar 

  • Steim, J. M., 1968, Spectroscopic and calorimetric studies of biological membrane structure, in: Molecular Association in Biological and Related Systems (R. F. Gould, ed.) pp. 259–302, American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. D., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Nat. Acad. Sci. U.S. 63:104–109.

    Article  CAS  Google Scholar 

  • Sturtevant, J. M., 1974, Phase transition of phospholipids, in: Quantum Statistical Mechanics in the Natural Sciences (B. Kursunoglu, S. Mintz, and S. Widmayer, eds.), pp. 63–85, Plenum Press, New York.

    Google Scholar 

  • Suurkuusk, J., Lentz, B. R., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1976, A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles, Biochemistry 15:1393–1401.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, T. E., Huang, C., and Litman, B. J., 1974, in: The Cell Surface in Development (A. A. Moscona, ed.), pp. 1–39, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Tourtellotte, M. E., 1972, Mycoplasma membranes. Structure and function, in: Membrane Molecular Biology (C. F. Fox and A. O. Keith, eds.), pp. 439–470, Sinauer Associates, Stanford, Conn.

    Google Scholar 

  • Träuble, H., and Eibl, H., 1975, Molecular interaction in lipid bilayers, in: Functional Linkages in Biomolecular Systems (F. O. Schmitt, D. M. Schneider, and D. M. Crothers, eds.), pp. 59–101, Raven Press, New York.

    Google Scholar 

  • Träuble, H., and Haynes, D. H., 1971, The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition, Chem. Phys. Lipids 7:324–335.

    Article  Google Scholar 

  • Träuble, H., and Sackmann, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition, J. Amer. Chem. Soc. 94:4499–4510.

    Article  Google Scholar 

  • Tsong, T. Y., Hearn, R. P., Wrathall, D. P., and Sturtevant, J. M., 1970, A calorimetric study of thermally induced conformational transitions of ribonuclease A and certain of its derivatives, Biochemistry 9:2666–2677.

    Article  PubMed  CAS  Google Scholar 

  • Uhing, M. C., 1975, A 31P nmr study of the thermal transitions of dipalmitoyl lecithin vesicles, Chem. Phys. Lipids 14:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D. J., and Keough, K. M., 1974, Changes in phase transitions of phosphatidyl-ethanolamine- and phosphatidylcholine-water dispersions induced by small modifications in the headgroup and backbone regions, FEBS Letters 47:158–161.

    Article  PubMed  CAS  Google Scholar 

  • Ververgaert, P. H. J. Th., De Kruijff, B., Verkleij, A. J., Tocanne, J. F., and Van Deenan, L. L. M., 1975, Calorimetric and freeze-etch study of the influence of Mg2+ on the thermotropic behavior of phosphatidylglycerol, Chem. Phys. Lipids 14:97–101.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., Richards, F. M., and Engelman, D. M., 1976, The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii, J. Mol. Biol. 107:255–269.

    Article  PubMed  CAS  Google Scholar 

  • Whittington, S. G., and Chapman, D., 1965, Monte Carlo study of rotational premelting in crystals of long chain paraffins, Trans. Faraday Soc. 61:2656–2660.

    Article  CAS  Google Scholar 

  • Whittington, S. G., and Chapman, D., 1966, The effect of density on the configurational properties of long-chain molecules using a Monte Carlo method, Trans. Faraday Soc. 62:3319–3324.

    Article  Google Scholar 

  • Wilkins, M. H. F., Blaurock, A. E., and Engelman, D. M., 1971, Bilayer structure in membranes, Nature 230:72–76.

    Article  CAS  Google Scholar 

  • Wu, S. H., and McConnell, H. M., 1975, Phase separations in phospholipid membranes, Biochemistry 14:847–854.

    Article  CAS  Google Scholar 

  • Yi, P. N., and MacDonald, R. C., 1973, Temperature dependence of optical properties of aqueous dispersions of phosphatidylcholine, Chem. Phys. Lipids 11:114–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Mabrey, S., Sturtevant, J.M. (1978). High-Sensitivity Differential Scanning Calorimetry in the Study of Biomembranes and Related Model Systems. In: Korn, E.D. (eds) Methods in Membrane Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4036-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4036-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4038-6

  • Online ISBN: 978-1-4613-4036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics