Skip to main content

Nuclear Magnetic Relaxation and Structure of Aqueous Solutions

  • Chapter
The Physical Chemistry of Aqueous System
  • 229 Accesses

Abstract

By the interpretation of the intermolecular nuclear magnetic relaxation rate of 19F the orientation of the water molecules in the hydration sphere of F can be determined. Similarly, the orientation of the water molecules around the methyl group of propionic acid in aqueous solution has been studied. Experiments are described which give information about the nature of association of solute in aqueous solution of a number of carboxylic acids and of ethanol. The local dynamic details of the I ion have been investigated. Some new results are briefly discussed regarding the nuclear magnetic relaxation by quadrupole interaction in electrolyte solutions.

This paper was presented at the symposium, “The Physical Chemistry of Aqueous Systems,” held at the University of Pittsburgh, Pittsburgh, Pennsylvania, June 12–14, 1972, in honor of the 70th birthday of Professor H. S. Frank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, 1961).

    Google Scholar 

  2. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR (Academic Press, New York and London, 1971).

    Google Scholar 

  3. H. G. Hertz and C. Rädle, Ber. Busenges. Physik. Chem. (1973), in press.

    Google Scholar 

  4. R. Göller, H. G. Hertz, and R. Tutsch, Pure Appl Chem. 32, 148 (1972).

    Article  Google Scholar 

  5. H. G. Hertz and R. Tutsch, to be published.

    Google Scholar 

  6. A. Geiger and H. G. Hertz, to be published.

    Google Scholar 

  7. K. Hermann and H. G. Hertz, to be published.

    Google Scholar 

  8. H. G. Hertz, M. Holz, G. Keller, H. Versmold, and C. J. Yoon, to be published.

    Google Scholar 

  9. G. H. F. Diercksen and W. P. Kraemer, Chem. Phys. Letters 5, 570 (1970).

    Article  CAS  Google Scholar 

  10. P. Russegger, H. Lischka, and P. Schuster, Theor. Chim. Acta 24, 191 (1972).

    Article  CAS  Google Scholar 

  11. E. v. Goldammer and M. D. Zeidler, Ber. Bunsenges. Physik. Chem. 73, 4 (1969).

    Google Scholar 

  12. E. v. Goldammer and H. G. Hertz, Phys. Chem. 74, 3734 (1970).

    Article  Google Scholar 

  13. M. Grüner and H. G. Hertz, Advan. Mol. Relaxation Processes 3, 75 (1972).

    Article  Google Scholar 

  14. H. G. Hertz, R. Tutsch, and H. Versmold, Ber. Bunsenges. Physik. Chem. 75, 1177 (1971).

    Google Scholar 

  15. A. S. Golik, A. W. Orishchenko, and A. J. Artemchenko, Dopovidi Akad. Nauk. Ukr. RSR, 453 (1954).

    Google Scholar 

  16. H. T. Briscoe and W. R. Rinehart, J. Phys. Chem. 46, 387 (1942).

    Article  CAS  Google Scholar 

  17. G. Engel and H. G. Hertz, Ber. Bunsenges. Physik. Chem. 72, 808 (1968).

    CAS  Google Scholar 

  18. H. G. Hertz, to be published.

    Google Scholar 

  19. H. G. Hertz, Z. Elektrochem. 65, 20 (1961).

    CAS  Google Scholar 

  20. K. A. Valiev, Zh. Eksper. i Teor. Fiz. 37, 109 (1959)[Sov. Phys. JETP 106, 77 (I960)].

    Google Scholar 

  21. K. A. Valiev and B. M. Khabibullin, Zh. Fiz. Khim. 35, 2265 [Russ. J. Phys. Chem. 35, 1118(1961)].

    Google Scholar 

  22. C. Deverell, Mol. Phys. 16, 491 (1969).

    Article  CAS  Google Scholar 

  23. R. E. Richards and B. A. Yorke, Mol. Phys. 6, 289 (1963).

    Article  CAS  Google Scholar 

  24. C. Deverell, D. J. Frost, and R. E. Richards, Mol. Phys. 9, 565 (1965).

    Article  CAS  Google Scholar 

  25. C. Hall, G. L. Haller, and R. E. Richards, Mol. Phys. 16, 377 (1969).

    Article  CAS  Google Scholar 

  26. C. Hall, R. E. Richards, G. N. Schulz, and R. R. Shang, Mol. Phys. 16, 528 (1969).

    Google Scholar 

  27. H. G. Hertz, G. Stalidis, and H. Versmold, J. Chim. Phys., Numéro Spécial, Octobre 1969, p. 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Hertz, H.G. (1973). Nuclear Magnetic Relaxation and Structure of Aqueous Solutions. In: Kay, R.L. (eds) The Physical Chemistry of Aqueous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4511-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4511-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4513-8

  • Online ISBN: 978-1-4613-4511-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics