Skip to main content

An Introduction to Chordal Graphs and Clique Trees

  • Conference paper
Graph Theory and Sparse Matrix Computation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 56))

Abstract

Clique trees and chordal graphs have carved out a niche for themselves in recent work on sparse matrix algorithms, due primarily to research questions associated with advanced computer architectures. This paper is a unified and elementary introduction to the standard characterizations of chordal graphs and clique trees. The pace is leisurely, as detailed proofs of all results are included. We also briefly discuss applications of chordal graphs and clique trees in sparse matrix computations.

Work was supported in part by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Incorporated, and in part by the Institute for Mathematics and Its Applications with funds provided by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database systems, J. Assoc. Comput. Mach., 30 (1983), pp. 479–513.

    MathSciNet  MATH  Google Scholar 

  2. P. A. Bernsteinand N. Goodman, Power of natural semijoins, SIAM J. Comput., 10 (1981), pp. 751–771.

    MathSciNet  MATH  Google Scholar 

  3. J. Blair, R. England, and M. Thomason, Cliques and their separators in triangulated graphs, Tech. Rep. CS-78–88, Department of Computer Science, The University of Tennessee, Knoxville, Tennessee, 1988.

    Google Scholar 

  4. J. Blairand B. Peyton, On finding minimum-diameter clique trees, Tech. Rep. ORNL/TM11850, Oak Ridge National Laboratory, Oak Ridge, TN, 1991.

    Google Scholar 

  5. P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Duffand J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans math. Software, 9 (1983), pp. 302–325.

    MathSciNet  MATH  Google Scholar 

  8. I. S. Duffand J. K. Reid, A note on the work involved in no-fill sparse matrix factorization, IMA J. Numer. Anal., 3 (1983), pp. 37–40.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Edelman, and R. Jamison, The theory of convex geometries, Geometriae Dedicata, 19 (1985), pp. 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Fulkerson, and O. Gross, Incidence matrices and interval graphs, Pacific J. Math., 15 (1985), pp. 835–855.

    MathSciNet  Google Scholar 

  11. K. Gallivan, M. Heath, E. Ng, J. Ortega, B. Peyton, R. Plemmons, C. Romine, A. Sameh, and R. Voigt, Parallel Algorithms for Matrix Computations, SIAM, Philadelphia, 1990.

    MATH  Google Scholar 

  12. F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B, 16 (1974), pp. 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Gavril, Generating the maximum spanning trees of a weighted graph, J. Algorithms, 8 (1987), pp. 592–597.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345–363.

    Article  MATH  Google Scholar 

  15. A. Georgeand J.-H. Liu, An automatic nested dissection algorithm for irregular finite element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053–1069.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Georgeand J.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc., En- glewood Cliffs, New Jersey, 1981.

    Google Scholar 

  17. A. Georgeand J.-H. Liu, The evolution of the minimum degree ordering algorithm, SIAM Review, 31 (1989), pp. 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  19. J. Gilbertand R. Schreiber, Highly parallel sparse Cholesky factorization, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1151–1172.

    Article  MATH  Google Scholar 

  20. M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    MATH  Google Scholar 

  21. C.-W. Hoand R. C. T. Lee, Counting clique trees and computing perfect elimination schemes in parallel, Inform. Process. Lett., 31 (1989), pp. 61–68.

    Article  MATH  Google Scholar 

  22. J. Jessand H. Kees, A data structure for parallel L/U decomposition, IEEE Trans. Comput., C-31 (1982), pp. 231–239.

    Google Scholar 

  23. E. Kirsch, Practical parallel algorithms for chordal graphs, Master’s thesis, Dept. of Computer Science, The University of Tennessee, 1989.

    Google Scholar 

  24. J. Lewis, B. Peyton, and A. Pothen, A fast algorithm for reordering sparse matrices for parallel factorization, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1156–1173.

    Article  MathSciNet  Google Scholar 

  25. J.-H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM Trans. Math. Software, 11 (1985), pp. 141–153.

    Article  MATH  Google Scholar 

  26. J.-H. Liu, A compact row storage scheme for Cholesky factors using elimination trees, ACM Trans. Math. Software, 12 (1986), pp. 127–148.

    Article  MATH  Google Scholar 

  27. J.-H. Liu, On the storage requirement in the out-of-core multifrontal method for sparse factoriza- tion, ACM Trans. Math. Software, 12 (1986), pp. 249–264.

    Article  MATH  Google Scholar 

  28. J.-H. Liu, Equivalent sparse matrix reordering by elimination tree rotations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 424–444.

    Article  MATH  Google Scholar 

  29. J.-H. Liu, Reordering sparse matrices for parallel, elimination, Parallel Computing, 11 (1989), pp. 73–91.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 134–172.

    Article  MATH  Google Scholar 

  31. J.-H. Liu, The multifrontal method for sparse matrix solution: theory and practice, SIAM Review, 34 (1992), pp. 82–109.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. W.-H. Liuand A. Mirzaian, A linear reordering algorithm for parallel pivoting of chordal graphs, SIAM J. Disc. Math., 2 (1989), pp. 100–107.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Lundquist, Zero patterns, chordal graphs and matrix completions, PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1990.

    Google Scholar 

  34. B. Peyton, Some applications of clique trees to the solution of sparse linear systems, PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.

    Google Scholar 

  35. B. Peyton, A. Pothen, and X. Yuan, A clique tree algorithm for partitioning chordal graphs for parallel sparse triangular solution. In preparation.

    Google Scholar 

  36. B. Peyton, A. Pothen, and X. Yuan, Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular so-lution. In preparation.

    Google Scholar 

  37. A. Pothenand F. Alvarado, A fast reordering algorithm for parallel sparse triangular solution, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 645–653.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Pothenand C. Sun, A distributed multifrontal algorithm using clique trees, Tech. Rep. CS-91–24, Department of Computer Science, The Pennsylvania State University, University Park, PA, 1991.

    Google Scholar 

  39. R. Prim, Shortest connection networks and some generalizations, Bell System Technical Journal, (1957), pp. 1389–1401.

    Google Scholar 

  40. D. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press, 1972, pp. 183–217.

    Google Scholar 

  41. D. Rose, R. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

    MathSciNet  MATH  Google Scholar 

  42. R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math. Software, 8 (1982), pp. 256–276.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Shier, Some aspects of perfect elimination orderings in chordal graphs, Discr. Appl. Math., 7 (1984), pp. 325–331.

    MathSciNet  MATH  Google Scholar 

  44. R. Tarjan, Maximum cardinality search and chordal graphs. Unpublished Lecture Notes CS 259, 1976.

    Google Scholar 

  45. R. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983.

    Book  Google Scholar 

  46. R. Tarjanand M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579.

    MathSciNet  MATH  Google Scholar 

  47. J. Walter, Representations of rigid cycle graphs, PhD thesis, Wayne State University, 1972.

    Google Scholar 

  48. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth., 2 (1981), pp. 77–79.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Blair, J.R.S., Peyton, B. (1993). An Introduction to Chordal Graphs and Clique Trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol 56. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8369-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8369-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8371-0

  • Online ISBN: 978-1-4613-8369-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics