Skip to main content

Carbon Sources for Bacterial Denitrification

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 10))

Abstract

There are many factors that affect denitrification and these have been reviewed by Delwiche and Bryan (1976), Payne (1981), and Knowles (1982). None of these authors have provided an in-depth review of the critical role of organic carbon in the denitrification process. Organic carbon availability is one of the most important factors that affects denitrifying activity in soil, yet the chemistry of soil organic matter is only partially understood and its complexity has probably inhibited studies. A readily available C substrate is often added to denitrifying systems in the laboratory to ensure an electron supply when other variables are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abufayed, A.A., and E.D Schroeder. 1986. Kinetics and stoichiometry of SBR/denitrification with a primary sludge carbon source. J. Water Pollut. Control Fed. 58:398–405.

    CAS  Google Scholar 

  • Adkins, A.M., and R. Knowles. 1984. Reduction of nitrous oxide by a soil Cytophaga in the presence of acetylene and sulfide. FEMS Microbiol. Lett. 23:171–174.

    CAS  Google Scholar 

  • Aftring, P.R., and B.F. Taylor. 1981. Aerobic and anaerobic catabolism of phthalic acid by a nitrate-respiring bacterium. Arch. Microbiol. 130:101–104.

    CAS  Google Scholar 

  • Aftring, P.R., B.E. Chalker, and B.F. Taylor. 1981. Degradation of phthalic acids by a denitrifying mixed culture of bacteria. Appl. Environ. Microbiol. 41:1117–1183.

    Google Scholar 

  • Aida, T., S. Hata, and H. Kusunoki. 1986. Temporary low oxygen conditions for the formation of nitrate reductase and nitrous oxide reductase by denitrifying Pseudomonas sp. G59. Can. J. Microbiol. 32:543–547.

    PubMed  CAS  Google Scholar 

  • Alexander, M. 1977. Introduction to Soil Microbiology, 2d ed., Wiley, NY. 467 pp.

    Google Scholar 

  • Aminuddin, M., and D.J.D. Nicholas. 1974a. Electron transfer during sulphide and sulphite oxidation in Thiobacillus denitrificans. J. Gen. Microbiol. 82:115–123.

    Google Scholar 

  • Aminuddin, M., and D.J.D. Nicholas. 1974b. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Biochim. Biophys. Acta 325:82–93.

    Google Scholar 

  • Aulakh, M.S., D.A. Rennie, and E.A. Paul. 1984. The influence of plant residues on denitrification rates in conventional and zero-tilled soils. Soil Sci. Soc. Am. J. 48:790–794.

    CAS  Google Scholar 

  • Auling, G., M. Reh, C.M. Lee, and H.G Schlegel. 1978. Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. Int. J. Syst. Bacteriol 28:82–95.

    Google Scholar 

  • Bailey, L.D. 1976. Effects of temperature and roots on denitrification in a soil. Can. J. Soil Sci. 56:79–87.

    CAS  Google Scholar 

  • Bailey, L.D., and E.G. Beauchamp. 1973. Effects of temperature on NO3 - and NO2 - reduction, nitrogenous gs production, and redox potential in a saturated soil. Can. J. Soil Sci. 53:213–218.

    CAS  Google Scholar 

  • Balba, M.T., and W.C. Evans. 1980. The anaerobic dissimilation of benzoate by Psuedomonas aeruginosa coupled with Desulfobibrio vulgaris, with sulphate as terminal electron acceptor. Biochem. Soc. Trans. 8:624–627.

    PubMed  CAS  Google Scholar 

  • Balba, M.T., and D.B. Nedwell. 1982. Microbial metabolism of acetate, propionate, and butyrate in anoxic sediment from the Colne Point saltmarsh, Essex, U.K. J. Gen. Microbiol. 128:1415–1422.

    CAS  Google Scholar 

  • Balderston, W.L., B. Sherr, and W.J. Payne. 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508.

    PubMed  CAS  Google Scholar 

  • Beauchamp, E.G., C. Gale, and J.C. Yeomans. 1980. Organic matter availability for denitrification in soils of different textures and drainage classes. Comm. Soil Sci. Plant Anal. 11:1221–1233.

    CAS  Google Scholar 

  • Bell, R.G. 1969. Studies on the decomposition of organic matter in flooded soil. Soil. Biol. Biochem. 1:105–116.

    CAS  Google Scholar 

  • Betlach, M.R., J.M. Tiedje, and R.B. Firestone. 1981. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen 13. Arch. Microbiol. 129:135–140.

    PubMed  CAS  Google Scholar 

  • Bloomfield, C. 1969. Sulphate reduction in waterlogged soils. J. Soil Sci. 20:207–221.

    CAS  Google Scholar 

  • Bollag, J.M., S. Drzymala, and L.T. Kardos. 1973. Biological versus chemical nitrite decomposition in soil. Soil Sci. 116:44–50.

    CAS  Google Scholar 

  • Bossert, I.D., M.D. Rivera, and L.Y. Young. 1986. p-Cresol biodegradation under denitrifying conditions: Isolation of a bacterial coculture. FEMS Microbiol. Ecol. 38:313–319.

    CAS  Google Scholar 

  • Bovell, C. 1967. The effect of sodium nitrite on the growth of Micrococcus denitrificans. Arch. Mikrobiol. 59:13–19.

    PubMed  CAS  Google Scholar 

  • Bowman, R.A., and D.D. Focht. 1974. The influence of glucose and nitrate concentrations upon denitrification rates in a sandy soil. Soil Biol. Biochem. 6:297.

    CAS  Google Scholar 

  • Bremner, J.M., and K. Shaw. 1958a. Denitrification in soil. I. Methods of investigation. J. Agric. Sci. 51:22–39.

    CAS  Google Scholar 

  • Bremner, J.M., and K. Shaw. 1958b. Denitrification in soil. II. Factors affecting denitrification. J. Agric. Sci. 51:40–52.

    CAS  Google Scholar 

  • Brown, C.M., D.S. MacDonald-Brown, and S.O. Stanley. 1975. Inorganic nitrogen metabolism in marine bacteria: Nitrate uptake and reduction in a marine pseudomonad. Marine Biol. 31:7–13.

    CAS  Google Scholar 

  • Bryan, B.A. 1981. Physiology and biochemistry of denitrification. In: Denitrification, nitrification and atmospheric nitrous oxide, C.C. Delwiche, ed., Wiley, NY. pp. 67–84.

    Google Scholar 

  • Burford, J.R., and J.M. Bremner. 1975. Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol. Biochem. 7:384–394.

    Google Scholar 

  • Burford, J.R., D.J. Greenland, and B.F. Pain. 1976. Effects of heavy dressings of slurry and inorganic fertilizers applied to grassland on the composition of drainage waters and the soil atmosphere. In: “Agriculture and Water Quality,” Tech. Bull. Minist. Agric. Fisheries and Food, No. 32, HMSO, London, pp. 432–443.

    Google Scholar 

  • Burton, D.L., and E.G. Beauchamp. 1985. Denitrification rate relationships with soil parameters in the field. Comm. Soil Sci. Plant Anal. 16:539–549.

    CAS  Google Scholar 

  • Cady, F.B., and W.V. Bartholomew. 1960. Sequential products of anaerobic denitrification in Norfolk soil. Soil Sci. Soc. Am. Proc. 24:477–482.

    CAS  Google Scholar 

  • Calder, K., K.A. Burke, and I LaScelles. 1980. Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans. Arch. Microbiol. 126:149–153.

    PubMed  CAS  Google Scholar 

  • Chandrasekaran, S., and T. Yoshida. 1973. Effect of organic acid transformations in submerged soils on growth of the rice plant. Soil Sci. Plant Nutr. 19:39–45.

    CAS  Google Scholar 

  • Christensen, S. 1985. Denitrification in an acid soil: effects of slurry and potassium nitrate on the evolution of nitrous oxide and on nitrate-reducing bacteria. Soil. Biol. Biochem. 17:757–764.

    CAS  Google Scholar 

  • Christianson, C.B., and C.M. Cho. 1983. Chemical denitrification in frozen soils. Soil Sci. Soc. Am. J. 47:38–42.

    CAS  Google Scholar 

  • Comfort, S.D, K.A. Kelling, D.R. Keeney, and IC. Converse. 1986. Changes in soil chemical properties in and around injected liquid manure bands. Agron. Abstr. 1986, p. 196. Am. Soc. Agron. New Orleans.

    Google Scholar 

  • Cooper, J.R., R.B. Reneau, Jr., W. Kroontje, and G.D Jones. 1984. Distribution of nitrogenous compounds in a Rhodic Paleudult following heavy manure application. J. Environ. Qual. 13:189–193.

    Google Scholar 

  • Cooper, P., and I.S. Cornforth. 1978. Volatile fatty acids in stored animal slurry. J. Sci. Food Agric. 29:19–27.

    CAS  Google Scholar 

  • Craswell, E.T. 1978. Some factors influencing denitrification and nitrogen immobilization in a clay soil. Soil Biol. Biochem. 10:241–245.

    CAS  Google Scholar 

  • Davidson, E.A., L.E Galloway, and M.K. Strand. 1987. Assessing available carbon: Comparison of techniques across selected forest soils. Comm. Soil Sci. Plant Anal. 18:45–64.

    CAS  Google Scholar 

  • deCatanzaro, J.B., and E.G. Beauchamp. 1985. The effect of some carbon substrates on denitrification rates and carbon utilization in soil. Biol. Fert. Soils 1:183–187.

    CAS  Google Scholar 

  • deCatanzaro, J.B., E.G. Beauchamp, and C. Drury. 1987. Denitrification versus dissimilatory nitrate reduction. Soil Biol. Biochem. 19:583–587.

    CAS  Google Scholar 

  • Deherain, P.P. 1897. The reduction of nitrate in arable soil. Compt. Rend. Acad. Sci. (Paris). Trans. 1974) In: Microbial Metabolism, H.W. Doelle, ed., Dowden, Hutchinson & Ross, Stroudsburg, Pa., pp. 233–234.

    Google Scholar 

  • Delwiche, C.C., and B.A. Bryan. 1976. Denitrification. Ann. Rev. Microbiol. 30:241–262.

    CAS  Google Scholar 

  • Egginton, G.W., and K.A. Smith. 1986a. Losses of nitrogen by denitrification from a grassland soil fertilized with cattle slurry and calcium nitrate. J. Soil Sci. 37:69–80.

    CAS  Google Scholar 

  • Egginton, G.W., and K.A. Smith. 1986b. Nitrous oxide emission from a grassland soil fertilized with slurry and calcium nitrate. J. Soil Sci. 37:59–67

    CAS  Google Scholar 

  • Elliot, L.F., and T.M. McCalla. 1972. The composition of the soil atmosphere beneath a beef cattle feedlot and a cropped field. Soil Sci. Soc. Amer. Proc. 36:68–70.

    Google Scholar 

  • Eppley, R.W., and J.L. Coatsworth. 1968. Uptake of nitrate and nitrite by Ditylum brightwellii—kinetics and mechanisms. J. Phycol. 4:151–156.

    CAS  Google Scholar 

  • Evans, D.G., E. Beauchamp, and J.T. Trevors. 1985. Sulfide alleviation of the acetylene inhibition of nitrous oxide reduction in soil. Appl. Environ. Microbiol. 49:217–220.

    PubMed  CAS  Google Scholar 

  • Evans, W.C. 1977. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270:17–22.

    PubMed  CAS  Google Scholar 

  • Ferguson, M., and E.B. Fred. 1909. Denitrification: The effect of fresh and well-rotted manure on plant growth. Va. Agr. Exp. Sta. Ann. Rpt. 1908:134–150.

    Google Scholar 

  • Focht, D.D., and A.C. Chang. 1975. Nitrification and denitrification processes related to wastewater treatment. Advan. Appl. Microbiol. 19:153–186.

    CAS  Google Scholar 

  • Gale, P.M. and J.T. Gilmour. 1986. Carbon and nitrogen mineralization from alfalfa (Medicago sativam L.): Comparison of aerobic and anaerobic decomposition. Am. Soc. Agron. Abstr. p. 179.

    Google Scholar 

  • Gamble, T.N., M.R. Betlach, and J.M. Tiedje. 1977. Nutritionally dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33:926–939.

    PubMed  CAS  Google Scholar 

  • Garcia, J.-L. 1973. Séquence des produits formes au cours de la dénitrification dans les sols de rizières du Sénégal. Ann. Microbiol. Inst. Pasteur 124B:351–362.

    Google Scholar 

  • Garica, J.-L., F. Pichinoty, M. Mandel, and B. Greenway. 1977. A new denitrifying saprophyte related to Pseudomonas pickettii. Ann. Microbiol. (Paris) 128A: 229–237.

    Google Scholar 

  • Germon, J.C. 1980. Étude quantitatif de la dénitrification biologique dans le sol a l’aide de l’acétylène. I. Application a différents sols. Ann. Microbiol. 131B:69–80.

    CAS  Google Scholar 

  • Germon, J.C, M. Pocket, R. Chaussod and G. Catroux. 1981. Relations entre l’activité dénitrifiante potentielle et les différentes formes de carboné du sol. In: Colloque humusazote, P. Dutil and F. Jacquin, eds., Int. Soil Sci. Soc. and Inst. Nat. Recher. Agron., Reims, France, pp. 338–341.

    Google Scholar 

  • Gotoh, S., and Y. Onikura. 1971. Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice. Soil Sci. Plant Nutr. 17:1–8.

    CAS  Google Scholar 

  • Gottschalk, G. 1986. Bacterial metabolism. Springer-Verlag, NY. 124 pp.

    Google Scholar 

  • Greenwood, D.J. 1961. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil. 14:360–377.

    CAS  Google Scholar 

  • Greenwood, D.J., and H. Lees. 1960. Studies on the decomposition of amino acids in soils. II. The anaerobic metabolism. Plant Soil. 12:69–80.

    CAS  Google Scholar 

  • Gross, P.J., J.M. Bremner, and A.M. Blackmer. 1982. A source of error in measurement of denitrification by the acetylene blockage method. Am. Soc. Agron. Meet. Abstr. Anaheim, CA, Dec. 3. p. 188.

    Google Scholar 

  • Guenzi, W.D., and W.E. Beard. 1981. Volatile fatty acids in a redox-controlled cattle manure slurry. J. Environ. Qual. 10:479–482.

    CAS  Google Scholar 

  • Guenzi, W.D., W.E. Beard, F.S. Watanabe, S.R. Olsen, and L.K. Porter. 1978. Nitrification and denitrification in cattle manure-amended soil. J. Environ. Qual. 7:196–202.

    CAS  Google Scholar 

  • Haider, K., A. Mosier, and O. Heinemeyer. 1985. Phytotron experiments to evaluate the effect of growing plants on denitrification. Soil Sci. Soc. Am. J. 49:636–641.

    CAS  Google Scholar 

  • Haider, K., A. Mosier, and O. Heinemeyer. 1987. The effect of growing plants on denitrification at high soil nitrate concentrations. Soil Sci. Soc. Am. J. 51:97–102.

    CAS  Google Scholar 

  • Hansen, R.W. and R.E. Kallio. 1957. Inability of nitrate to serve as a terminal oxidant for hydrocarbons. Science 125:1190–1199.

    Google Scholar 

  • Harper, S.H., and J.M. Lynch. 1981. The kinetics of straw decomposition in relation to its potential to produce the phytotoxin acetic acid. J. Soil. Sci. 32:627–637.

    CAS  Google Scholar 

  • Hernandez, D., and J.J. Rowe. 1987. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa. Appl. Environ. Microbiol. 53:745–750.

    PubMed  CAS  Google Scholar 

  • Hutchinson, H.B. 1918. The influence of plant residues on nitrogen fixation and on losses of nitrate in the soil. J. Agric. Sci. 9:92–111.

    Google Scholar 

  • Ingraham, J.L. 1981. Microbiology and genetics of denitrifiers. In: Denitrification, nitrification and atmospheric nitrous oxide, C.C. Delwiche, ed., Wiley, NY. pp. 45–65.

    Google Scholar 

  • Ishaque, M., and M.I.H. Aleem. 1973. Intermediates of denitrification in the chemoautotroph Thiobacillus denitrificans. Arch. Mikrobiol. 94:269–282.

    PubMed  CAS  Google Scholar 

  • Ishaque, M., A. Donawa, and M.I.H. Aleem. 1973. Energy-coupling mechanisms under aerobic and anaerobic conditions in autotrophically grown Pseudomonas saccharophilia. Arch. Biochem. Biophys. 159:570–579.

    PubMed  CAS  Google Scholar 

  • Jacobson, S.N., and M. Alexander. 1980. Nitrate loss from soil in relation to temperature, carbon source and denitrifier populations. Soil Biol Biochem. 12:501–505.

    CAS  Google Scholar 

  • Jansson, S.L., and E.E. Clark. 1952. Losses of nitrogen during decomposition of plant material in the presence of inorganic nitrogen. Soil Sci. Soc. Am. Proc. 16:330–334.

    CAS  Google Scholar 

  • Jenkinson, D.S., and D.S. Powlson. 1976. The effect of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biol. Biochem. 8:167–177.

    CAS  Google Scholar 

  • Johansson, C., and I.E. Galbally. 1984. Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 47:1284–1289.

    PubMed  CAS  Google Scholar 

  • Knowles, R. 1982. Denitrification. Microbiol. Rev. 46:43–70.

    PubMed  CAS  Google Scholar 

  • Kristjansson, IK., B. Walter, and T.C. Hollocher. 1978. Respiration dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria. Biochem. 17:5014–5019.

    CAS  Google Scholar 

  • Laanbroek, H.J., and N. Pfennig. 1981. Oxidation of short-chain fatty acids by sulfatereducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128:330–335.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L.G., and K.E. Eriksson. 1985. Ecology of microbial cellulose degradation. In: Advances in Microbial Ecology, vol. 8, K.C. Marshall, ed., Plenum, NY, pp. 237–299.

    Google Scholar 

  • Lynch, J.M. 1977a. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J. Appl. Bacteriol. 42:81–87.

    CAS  Google Scholar 

  • Lynch, J.M. 1977b. Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biol. Biochem. 10:131–135.

    Google Scholar 

  • Lynch, J.M., and K.B. Gunn. 1978. Use of a chemostat to study decomposition of wheat straw in soil slurries. J. Soil Sci. 29:551–556.

    CAS  Google Scholar 

  • Lynch, J.M., K.C. Hall, H.A. Anderson, and A. Hepburn. 1980. Organic acids from the anaerobic decomposition of Agropyron repens rhizomes. Phytochemistry 19:1846–1847.

    CAS  Google Scholar 

  • Marshall, P.R. 1979. Miscible displacement investigations of denitrification in soil. M.Sc. thesis, University of Guelph. 101 pp.

    Google Scholar 

  • McCarty, P.L., L. Beck, and P. St. Amant. 1969. Biological denitrification of wastewaters by addition of organic material. Purdue Univ. Eng. Ext. Ser. 135:1271–1285.

    Google Scholar 

  • McGarity, J.W., C.M. Gilmour, and W.B. Bollen. 1958. Use of an electrolytic respirometer to study denitrification in soil. Can. J. Microbiol. 4:303–316.

    PubMed  CAS  Google Scholar 

  • Meek, B.D, A.J. MacKensie, T.J. Donovan, and W.F. Spencer. 1974. The effect of large applications of manure on movement of nitrate and carbon in an irrigated desert soil. J. Environ. Qual. 3:253–258.

    CAS  Google Scholar 

  • Mishustin, E.N., and N.S. Erofeev. 1964. Nature of the toxic compounds accumulating during the decomposition of straw in oil. Microbiology 35:126–129.

    Google Scholar 

  • Misra, C., D.R. Neilsen, and J.W. Biggar. 1974. Nitrogen transformations in soil during leaching. II Steady state nitrification and nitrate reduction. Soil Sci. Soc. Am. Proc. 38:294–304.

    CAS  Google Scholar 

  • Molina, J.A.E., C.E. Clapp, M.I Shaffer, F.W. Chichester, and W.E. Larson. 1983. NCSOIL, A model of nitrogen and carbon transformations in soil: Description, calibration and behavior. Soil Sci. Soc. Am. J. 47:85–91.

    CAS  Google Scholar 

  • Moraghan, J.T., and K.A. Ayotade. 1968. The influence of added organic matter on certain processes occurring in anaerobically incubated soils. Trans. 9th Int. Cong. Soil Sci. 4:699–707.

    CAS  Google Scholar 

  • Mosey, F.E. 1983. Mathematical modelling of the anaerobic digestion process: Regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Tech. 15:209–232.

    CAS  Google Scholar 

  • Mosier, A.R. 1986. Interaction of soluble carbon and soil water content on denitrification. Am. Soc. Agron. Abstr. 184 pp.

    Google Scholar 

  • Myrold, D.D., and J.M. Tiedje. 1985. Establishment of denitrification capacity in soil: Effects of carbon, nitrate and moisture. Soil Biol. Biochem. 17:819–822.

    CAS  Google Scholar 

  • Nakajima, M., T. Hayamizu, and H. Nishimura. 1984a. Effect of oxygen concentrations on the rates of denitrification and denitrification in the sediments of an eutrophic lake. Water Res. 18:335–338.

    CAS  Google Scholar 

  • Nakajima, M., T. Hayamizu, and H. Nishimura. 1984b. Inhibitory effect of oxygen on denitrification and denitrification in sludge from an oxidation ditch. Water Res. 18:339–343.

    CAS  Google Scholar 

  • Nalecz, M.J., R.R Casey, and A. Azzi. 1986. Use of N,N1-decyclohexylcarbodiimide to study membrane-bound enzymes. In: Methods in Enzymology, vol. 125, S. Fleischer and B. Fleischer, eds., Academic Press, NY, pp. 86–108.

    Google Scholar 

  • Nelson, D.W., and J.M. Bremner. 1969. Factors affecting chemical transformations of nitrite in soils. Soil Biol. Biochem. 1:229–239.

    CAS  Google Scholar 

  • Nelson, D.W., and J.M. Bremner. 1970. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2:203–215.

    CAS  Google Scholar 

  • Nishimura, Y, T. Kamihara, and S. Fukui. 1980. Diverse effects of formate on the dissimilatory metabolism of nitrate in Pseudomonas denitrificans ATCC 13867: Growth, nitrite accumulation in culture, cellular activities of nitrate and nitrite reductases. Arch. Microbiol. 124:191–195.

    CAS  Google Scholar 

  • Nommik, H. 1956. Investigations on denitrification in soil. Acta Agric. Scand. 6:195–228.

    CAS  Google Scholar 

  • Olsen, R.J., R.F. Hensler, and O.J. Attoe. 1970. Effect of manure application, aeration, and soil pH on soil nitrogen transformations and on certain soil test values. Soil Sci. Soc. Am. Proc. 34:222–225.

    Google Scholar 

  • Onodera, I. 1929. Mem. Morioka Agr. Coll., no. 13:176 (cited by Yamane and Sato, 1964).

    Google Scholar 

  • Patni, N.K., and P.Y Jui. 1985. Volatile fatty acids in stored dairy cattle slurry. Agric. Wastes 13:159–178.

    CAS  Google Scholar 

  • Patten, D.K., J.M. Bremner, and A.M. Blackmer. 1980. Effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate. Soil Sci. Soc. Am. J. 44:67–70.

    CAS  Google Scholar 

  • Patrick, W.H. 1960. Nitrate reduction rates in a submerged soil is affected by redox potential. Trans. 7th Int. Cong. Soil Sci. (Madison) 2:494–500.

    Google Scholar 

  • Payne, W.J. 1981. Denitrification, Wiley, NY, 214 pp.

    Google Scholar 

  • Perry, J.J. 1979. Microbial cooxidations involving hydrocarbons. Microbiol. Rev. 43:59–72.

    PubMed  CAS  Google Scholar 

  • Pfitzner, J., and H.G. Schlegel. 1973. Denitrifikation bei Hydrogenomonas eutropha Stam. H16. Arch. Mikrobiol. 90:199–211.

    PubMed  CAS  Google Scholar 

  • Pilot, L., and W.H. Patrick. 1972. Nitrate reduction in soils. Effect of soil moisture tension. Soil Sci. 114:312–316.

    CAS  Google Scholar 

  • Rainville, N., and A. Morin. 1985. Changes in the volatile fatty acids content of laboratory stored sterilized and non-sterilized swine wastes. Microbios. 42:175–182.

    PubMed  CAS  Google Scholar 

  • Reddy, K.R., R. Khaleel, and M.R. Overcash. 1980. Carbon transformations in land areas receiving organic wastes in relation to nonpoint source pollution: A conceptual model. J. Environ. Qual. 9:434–442.

    CAS  Google Scholar 

  • Reddy, K.R., P.S.C. Ras, and R.E. Jessup. 1982. The effect of carbon mineralization on denitrification kinetics in mineral and organic soils. Soil Sci. Soc. Am. J. 46:62–68.

    CAS  Google Scholar 

  • Rhee, G-Y, and G.W. Fuhs. 1978. Wastewater denitrification with one-carbon compounds as energy source. J. Water Pollut. Control Fed. 50:2111–2119.

    CAS  Google Scholar 

  • Rolston, D.E., P.S.C. Rao, J.M. Davidson, and R.E. Jessup. 1984. Simulation of denitrification losses of nitrate fertilizer applied to uncropped, cropped, and manure-amended field plots. Soil Sci. 137:270–279.

    Google Scholar 

  • Ryden, J.C., and L.J. Lund. 1980. Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci. Soc. Am. J. 44:505–511.

    CAS  Google Scholar 

  • Schennen, U., K. Braun, and H.J. Knackmuss. 1985. Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. Appl. Environ. Microbiol. 161:321–325.

    CAS  Google Scholar 

  • Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic nonspore forming bacterium. Arch. Microbiol. 133:195–201.

    CAS  Google Scholar 

  • Schloemer, R., and R.H. Garrett. 1974. Nitrate transport system in Neurospora crassa. J. Bacteriol. 118:259–269.

    CAS  Google Scholar 

  • Schuman, G.E., and T.M. McCalla. 1976. Effect of short-chain fatty acids extracted from beef cattle manure on germination and seedling development. Appl. Environ. Microbiol. 31:655–660.

    PubMed  CAS  Google Scholar 

  • Sherwood, M.T. 1980. The effects of landspreading of animal manures on water quality. In: Effluents from Livestock, J.K.R. Gasser, ed., Applied Science Publishers, Essex, England, pp. 379–392.

    Google Scholar 

  • Sleat, R., and J.P. Robinson. 1984. The bacteriology of anaerobic degradation of aromatic compounds. J. Appl. Bacteriol. 57:381–394.

    PubMed  CAS  Google Scholar 

  • Smid, A.E., and E.G. Beauchamp. 1976. Effects of temperature and organic matter on denitrification in soil. Can. J. Soil Sci. 56:385–391.

    CAS  Google Scholar 

  • Smith, C.J., and W.H. Patrick, Jr. 1983. Nitrous oxide emission as affected alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate. Soil Biol. Biochem. 15:693–697.

    CAS  Google Scholar 

  • Smith, M.S., and J.M. Tiedje. 1979a. The effect of roots on soil denitrification. Soil Sci. Soc. Am. J. 43:951–955.

    CAS  Google Scholar 

  • Smith, M.S., and J.M. Tiedje. 1979b. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 11:261–267.

    CAS  Google Scholar 

  • Sorensen, J., D Christensen, and B.B. Jorgenson. 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42:5–11.

    PubMed  CAS  Google Scholar 

  • Stanford, G, R.A. Vanderpol, and S. Dzionia. 1975. Denitrification rates in relation to total and extractable soil carbon. Soil Sci. Soc. Am. Proc. 39:284–289.

    CAS  Google Scholar 

  • Stefanson, R.C. 1972. Soil denitrification in sealed soil-plant systems. I. Effect of plants, soil water content and soil organic matter content. Plant Soil 7:113–127.

    Google Scholar 

  • Stevens, R.J., and I.S. Cornforth. 1974. The effect of pig slurry applied to a soil surface on the composition of the soil atmosphere. J. Sci. Fed. Agric. 25:1263–1272.

    CAS  Google Scholar 

  • Stouthamer, A.H. (1976). Yield studies in microorganisms. Meadowfield Press, Durham, England, 88 pp.

    Google Scholar 

  • Taylor, B.F. 1983. Aerobic and anaerobic catabolism of vanillic acid and some other methoxyaromatic compounds by a Pseudomonas sp. strain PN-1. Appl. Environ. Microbiol. 46:1286–1292.

    PubMed  CAS  Google Scholar 

  • Taylor, B.R, and M.J. Hebb. 1972. The anaerobic degradation of aromatic compounds by a denitrifying bacterium. Arch. Microbiol. 83:165–171.

    CAS  Google Scholar 

  • Taylor, B.R, W.L. Campbell, and I. Chinoy. 1970. Anaerobic degradation of the benzene nucleus by a facultatively anaerobic microorganism. J. Bacteriol. 102:430–437.

    PubMed  CAS  Google Scholar 

  • Taylor, B.R, W.L. Hearn, and S. Pincus. 1979. Metabolism of monofluorobenzoates and monochlorabenzoates by a denitrifying bacterium. Arch. Microbiol. 122:301–306.

    PubMed  CAS  Google Scholar 

  • Tenney, F.G., and S.A. Waksman. 1930. Composition of natural organic materials and their decomposition in the soil: V. Decomposition of various chemical constituents in plant materials, under anaerobic conditions. Soil Sci. 29:143–160.

    Google Scholar 

  • Terry, R.E., and J.M. Duxbury. 1985. Acetylene decomposition in soils. Soil Sci. Soc. Am. J. 49:90–94.

    CAS  Google Scholar 

  • Tiedje, J.M. 1982. Denitrification. In: Methods of Soil Analysis, part 2, A.L. Page, ed., Am. Soc. Agron., Madison, WI, pp. 1011–1026.

    Google Scholar 

  • Tiedje, J.M., A.J. Sexstone, D.R. Myrold, and J.A. Robinson. 1982. Denitrification: Ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583.

    PubMed  CAS  Google Scholar 

  • Timmer-Ten Hoor, A. 1975. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth. J. Sea Res. 9:343–353.

    Google Scholar 

  • Timmer-Ten Hoor, A. 1976. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus denitrificans. Antonie van Leeuwenhoek 42:483–492.

    Google Scholar 

  • Timmer-Ten Hoor, A. 1977. Denitrificerende Kleurloze Zwavelbacterien. Ph.D. diss., Univ. of Groningen.

    Google Scholar 

  • Trevors, J.T. 1985. The influence of oxygen concentrations on denitrification in soil. Appl. Microbiol. Biotechnol. 23:152–155.

    CAS  Google Scholar 

  • Trevors, J.T., and E. Beauchamp. 1985. Reduction of nitrous oxide (N2O) by bacterial isolate in the presence of sulfide and acetylene. J. Microbiol. Meth. 4:127–131.

    CAS  Google Scholar 

  • Trevors, J.T., and M.E. Starodub. 1988. The influence of oxygen concentrations on denitrification in freshwater sediment. J. Basic Microbiol., 27:387–391.

    Google Scholar 

  • Verhoeven, W., A.L. Koster, and M.C.A. Van Nievelt. 1954. Studies on true dissimilatory nitrate reduction. III. Micrococcus denitrificans beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Antonie van Leeuwenhoek. 20:273–284.

    PubMed  CAS  Google Scholar 

  • Wallace, J.M., and L.R Elliot. 1979. Phytotoxins from anaerobically decomposing wheat straw. Soil Biol. Biochem. 11:325–330.

    CAS  Google Scholar 

  • Wallingford, G.W, L.S. Murphy, W.L. Powers, and H.L. Manges. 1975. Denitrification in soil treated with beef-feedlot manure. Commun. Soil Sci. Plant Anal. 6:147–161.

    CAS  Google Scholar 

  • Watanabe, I., and M.R. deGuzman. 1980. Effect of nitrate on acetylene disappearance from anaerobic soil. Soil Biol. Biochem. 12:193–194.

    CAS  Google Scholar 

  • Wegener, W.S., H.C. Reeves, R. Rabin, and S.J. Ajl. 1968. Alternate pathways of metabolism of short-chain fatty acids. Bacteriol. Rev. 32:1–26.

    PubMed  CAS  Google Scholar 

  • Widdel, R, and N. Pfennig. 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionics gen. nov., sp. nov. Arch. Microbiol. 131:360–365.

    CAS  Google Scholar 

  • Wiljer, J., and C.C. Delwiche. 1954. Investigations on the denitrifying process in soil. Plant Soil 5:155–169.

    Google Scholar 

  • Williams, A.G. 1983. Organic acids, biochemical oxygen demand and chemical oxygen demand in the soluble fraction of piggery slurry. J. Sci. Fed. Agric. 34:212–220.

    CAS  Google Scholar 

  • Williams, R.J., and W.C. Evans. 1975. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Biochem. J. 148:1–10.

    PubMed  CAS  Google Scholar 

  • Woldendorp, J.W. 1963. The influence of living plants on denitrification. Meded. Ladb. Hoogesch. Wageningen 63:1–100.

    Google Scholar 

  • Yamane, I., and K. Sato. 1964. Decomposition of glucose and gas formation in flooded soil. Soil Sci. Plant Nutr. 10:38–41.

    Google Scholar 

  • Yamane, I., and K. Sato. 1968. Initial drop of oxidation-reduction potential in submerged air-dried soils. Soil Sci. Plant Nutr. 14:68–72.

    CAS  Google Scholar 

  • Yashura, A., and K. Fuwa. 1977. Odor and volatile compounds in liquid swine manure. I. Carboxylic acids and phenols. Bull. Chem. Soc. Japan 50:731–733.

    Google Scholar 

  • Yeomans, J.C., and E.G. Beauchamp. 1982. Acetylene as a possible substrate in the denitrification process. Can. J. Soil Sci. 62:139–144.

    CAS  Google Scholar 

  • Yeomans, J.C., and J. Bremner. 1986. Effects of organic solvents on denitrification in soil. Am. Soc. Agron. Abstr. p. 192.

    Google Scholar 

  • Yoshinari, T., and R. Knowles. 1976. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Comm. 69:705–710.

    PubMed  CAS  Google Scholar 

  • Young, L.Y. 1984. Anaerobic degradation of aromatic compounds, In: Microbial degradation of organic compounds, D.T. Gibson, ed., Marcel Dekker, NY, pp. 487–523.

    Google Scholar 

  • Young, L.Y., and A.C. Frazer. 1987. The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol. J. 5:261–293.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Beauchamp, E.G., Trevors, J.T., Paul, J.W. (1989). Carbon Sources for Bacterial Denitrification. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8847-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8847-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8849-4

  • Online ISBN: 978-1-4613-8847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics