Skip to main content

The Ionic Environment of Rod-like Polyelectrolytes

  • Chapter
Micellar Solutions and Microemulsions

Abstract

Association between electrolyte ions and polyions is of fundamental importance. Here, we discuss the nature of the distribution of small ions around polyelectrolytes and examine the sensitivity of the distribution to salt concentration and polyion charge density. Two polyion models are considered, namely, a simplified one in which the polyion is taken to be a uniformly charged cylinder and an atomically more detailed one in which the smaller ions interact with the polyion on an atom by atom basis. The hypernetted chain integral equation and Monte Carlo computer experiments are used to develop the results for ionic distributions. The results confirm that the ionic environment around highly charged polyions is relatively insensitive to large changes in bulk electrolyte concentrations in the case of the simpler model of the polyion. Further, the concept of an effective net charge for the polyion as a determinant for the asymptotic electrostatic potential holds. The results for the more detailed model of the polyion indicate that charge association can be understood qualitatively using the simpler, uniformly charged model. Such a simplification is, however, not sufficient for determining the local ionic concentrations and the spatial extent of the association quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bendedouch, S.-H. Chen, W.C. Koehler, and J.S. Lin, J. Chem. Phys. 76, 5022 (1982);

    Article  CAS  Google Scholar 

  2. M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).

    Article  CAS  Google Scholar 

  3. G.S. Manning, Accounts of Chem. Res. 12, 443 (1979).

    Article  CAS  Google Scholar 

  4. M. Guéron and G. Weisbuch, Biopolymers 19, 353 (1980).

    Article  Google Scholar 

  5. G.V. Ramanathan, J. Chem. Phys. 78, 3223 (1983);

    Article  Google Scholar 

  6. B.H. Zimm and M. LeBret, J. Biomolec. Struct. and Dyn. 1, 461 (1983).

    CAS  Google Scholar 

  7. R. Bacquet and P.J. Rossky, J. Phys. Chem. 88, 2660 (1984).

    Article  CAS  Google Scholar 

  8. C.S. Murthy, R. Bacquet, and P.J. Rossky, J. Phys. Chem. 89, 701 (1985).

    Article  CAS  Google Scholar 

  9. M. Rami Reddy, P.J. Rossky, and C.S. Murthy, J. Phys. Chem. 91, 4923 (1987).

    Article  CAS  Google Scholar 

  10. S. Arnott, P. Campbell-Smith, and P. Chandresekharan, “Handbook of Biochemistry and Molecular Biology,” Vol. 2, p. 411 ( Chemical Rubber Co., Cleveland, 1976 ).

    Google Scholar 

  11. S. Weiner, P. Kollman, D. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner, J. Am. Chem. Soc. 106, 765 (1984).

    Article  CAS  Google Scholar 

  12. R.O. Watts in “Specialist Periodical Reports, Statistical Mechanics,” Vol. 1, The Chemical Society, London, 1973.

    Google Scholar 

  13. H.L. Friedman and W.D.T. Dale, in “Modern Theoretical Chemistry, Statistical Mechanics,” Part 5A, B.J. Berne, ed., Plenum, New York, 1977.

    Google Scholar 

  14. J.P. Valleau, L.K. Cohen, D.N. Card, J. Chem. Phys. 72, 5942 (1980);

    Article  CAS  Google Scholar 

  15. M. LozadoCassou, R. Saavedra-Barrera, and D. Henderson, J. Chem. Phys. 77, 5150 (1982).

    Article  Google Scholar 

  16. J.P. Valleau and S.G. Whittington, in “Modern Theoretical Chemistry, Statistical Mechanics,” Part 5A, B.J. Berne, ed., Plenum, New York, 1977.

    Google Scholar 

  17. G.M. Torrie and J.P. Valleau, J. Chem. Phys. 73, 5807 (1980).

    Article  CAS  Google Scholar 

  18. G.S. Mannins, Accounts of Chem Res. 12, 443 (1979).

    Article  Google Scholar 

  19. R. Bacquet, Ph.D. thesis, University of Texas at Austin, 1985;

    Google Scholar 

  20. R. Bacquet and P.J. Rossky, J. Phys. Chem. 92, 3604 (1988).

    Article  CAS  Google Scholar 

  21. H. Wennerström, G. Lindblom, and B. Lindman, Chemica Scripta 6, 97 (1974);

    Google Scholar 

  22. B. Lindman, J. Mag. Res. 32, 39 (1978).

    CAS  Google Scholar 

  23. M.L. Bleam, C.F. Anderson, and M.T. Record, Jr., Biochemistry 22, 5418 (1983).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rossky, P.J., Murthy, C.S., Bacquet, R. (1990). The Ionic Environment of Rod-like Polyelectrolytes. In: Chen, SH., Rajagopalan, R. (eds) Micellar Solutions and Microemulsions. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8938-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8938-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8940-8

  • Online ISBN: 978-1-4613-8938-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics