Skip to main content

Activation of the Embryonic Genome: Comparisons Between Mouse and Bovine Development

  • Conference paper
Preimplantation Embryo Development

Part of the book series: Serono Symposia, USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

Eutherian mammalian preimplantation development includes an essential transitional period during which the embryo proceeds from an initial interval of maternal control (established during oogenesis) to embryonic control resulting from the activation of transcriptional activity from the embryonic genome (1–3). As for most aspects of early mammalian development, the events surrounding the activation of the embryonic genome are most readily examined in the mouse. There is, however, evidence to suggest that the mouse may display a pattern of preimplantation development (certainly in the timing of the major events) that is unique. It is, therefore, essential to broaden the analysis of preimplantation development to include other mammalian species. A comparison of several species in Table 9.1 shows that there is considerable variation in the timing, cell number, and developmental stage at which the early embryos of these groups undergo the major morphogenetic events of preimplantation development (4, 5). As shown in Table 9.2, these variations also reflect contrasts in the timing of the molecular and biochemical events of preimplantation development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz GA. Utilization of genetic information in the preimplantation mouse embryo. In: Rossant J, Pedersen R, eds. Experimental approaches to mammalian embryonic development. Cambridge, UK: Cambridge University Press, 1986:239–65.

    Google Scholar 

  2. Schultz RM. Molecular aspects of mammalian oocyte growth and maturation. In: Rossant J, Pedersen R, eds. Experimental approaches to mammalian embryonic development. Cambridge, UK: Cambridge University Press, 1986:195–237.

    Google Scholar 

  3. Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990;26:90–100.

    Article  PubMed  CAS  Google Scholar 

  4. McLaren A. The embryo. In: Austin CR, Short RV, eds. Reproduction in mammals, 2. Embryonic and fetal development. Cambridge, UK: Cambridge University Press, 1982:1–26.

    Google Scholar 

  5. Papaioannou VE, Ebert KM. Comparative aspects of embryo manipulation in mammals. In: Rossant J, Pedersen R, eds. Experimental approaches to mammalian embryonic development. Cambridge, UK: Cambridge University Press, 1986:67–96.

    Google Scholar 

  6. Piko L, Clegg KB. Quantitative changes in total RNA, total poly(A) and ribosomes in early mouse embryos. Dev Biol 1982;89:362–78.

    Article  PubMed  CAS  Google Scholar 

  7. Giebelhaus DH, Heikkila JJ, Schultz GA. Changes in the quantity of histone and actin messenger RNA during development of preimplantation mouse embryos. Dev Biol 1983;98:148–54.

    Article  PubMed  CAS  Google Scholar 

  8. Graves RA, Marzluff WF, Giebelhaus DH, Schultz GA. Quantitative and qualitative changes in histone gene expression during early mouse embryo development. Proc Natl Acad Sci USA 1985;82:5685–9.

    Article  PubMed  CAS  Google Scholar 

  9. Clegg KB, Piko L. Quantitative aspects of RNA synthesis and polyadenyla-tion in 1-cell and 2-cell mouse embryos. J Embryol Exp Morphol 1983; 74:169–82.

    PubMed  CAS  Google Scholar 

  10. Clegg KB, Piko L. Poly(A) length, cytoplasmic polyadenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol 1983;95:331–41.

    Article  PubMed  CAS  Google Scholar 

  11. Golbus MS, Calarco PG, Epstein CJ. The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 1973;186:207–16.

    Article  PubMed  CAS  Google Scholar 

  12. Van Blerkom J, Brockway GO. Qualitative patterns of protein synthesis in the preimplantation mouse embryo, I. Normal pregnancy. Dev Biol 1975; 44:148–57.

    Article  PubMed  Google Scholar 

  13. Flach G, Johnson MH, Braude PR, Taylor RAS, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1982;1:681–6.

    PubMed  CAS  Google Scholar 

  14. Bolton VN, Oades PJ, Johnson MH. The relationship between cleavage, DNA replication and gene expression in the mouse 2-cell embryo. J Embryol Exp Morphol 1984;79:139–63.

    PubMed  CAS  Google Scholar 

  15. Muggleton-Harris AL, Whittingham DG, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature (London) 1982; 299:460–2.

    Article  PubMed  CAS  Google Scholar 

  16. Pratt HPM. Isolation, culture and manipulation of preimplantation mouse embryos. In: Monk M, ed. Techniques in mammalian development. Oxford: IRL Press, 1987:13–42.

    Google Scholar 

  17. Pratt HPM, Muggleton-Harris AL. Cycling cytoplasmic factors that promote mitosis in cultured 2-cell mouse embryos. Development 1988;104:115–20.

    PubMed  CAS  Google Scholar 

  18. Norris ML, Barton SC, Surani MAH. A qualitative comparison of protein synthesis in the preimplantation embryos of four rodent species (mouse, rat, hamster, gerbil). Gamete Res 1985;12:313–6.

    Article  CAS  Google Scholar 

  19. Seshagiri PB, Bavister BD, Williamson JL, Aiken JM. Qualitative comparison of protein production at different stages of hamster preimplantation embryo development. Cell Differ Dev 1990;31:161–8.

    Article  PubMed  CAS  Google Scholar 

  20. Seshagiri PB, Aiken JM, Williamson JL, Bavister BD. The time of onset of embryonic genome activation in golden hamsters is at the early 2-cell stage. J Cell Biol 1990;111:357a.

    Google Scholar 

  21. Manes C. Nucleic acid synthesis in preimplantation rabbit embryos, I. Quantitative aspects, relationship to early morphogenesis and protein synthesis. J Exp Zool 1969;172:303–10.

    Article  PubMed  CAS  Google Scholar 

  22. Manes C. The participation of the embryonic genome during early cleavage in the rabbit. Dev Biol 1973;32:453–9.

    Article  PubMed  CAS  Google Scholar 

  23. Manes C. Nucleic acid synthesis in preimplantation rabbit embryos, II. Delayed synthesis of ribosomal RNA. J Exp Zool 1971;176:87–96.

    Article  PubMed  CAS  Google Scholar 

  24. Manes C. Nucleic acid synthesis in preimplantation rabbit embryos, III. A “dark period” immediately following fertilization and the early predominance of low molecular weight RNA synthesis. J Exp Zool 1977;201:247–58.

    Article  PubMed  CAS  Google Scholar 

  25. Schultz GA. Characterization of polyribosomes containing newly synthesized messenger RNA in preimplantation rabbit embryos. Exp Cell Res 1973; 82:168–74.

    Article  PubMed  CAS  Google Scholar 

  26. Van Blerkom J, Manes C. Development of preimplantation rabbit embryos in vivo and in vitro, II. A comparison of qualitative aspects of protein synthesis. Dev Biol 1974;40:40–51.

    Article  PubMed  Google Scholar 

  27. Seidel GE, Bowen RA, Kane MT. In vitro fertilization, culture and transfer of rabbit ova. Fertil Steril 1976;27:861–70.

    PubMed  CAS  Google Scholar 

  28. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature (London) 1988;332:459–61.

    Article  PubMed  CAS  Google Scholar 

  29. Tesarik J, Kopecny V, Plachot M, Mandelbaum J. Activation of nucleolar and extra nucleolar RNA synthesis and changes in the ribosomal content of human embryos developing in vitro. J Reprod Fertil 1986;78:463–70.

    Article  PubMed  CAS  Google Scholar 

  30. Tesarik J, Kopecny V, Plachot M, Mandelbaum J, Dalage C, Flechon JE. Nucleolonesis in the human embryo developing in vitro: ultrastructural and autoradiographic analysis. Dev Biol 1986;115:193–203.

    Article  PubMed  CAS  Google Scholar 

  31. Tesarik J, Kopecny V, Plachot M, Mandelbaum J. High resolution autoradiographic localization of DNA-containing sites and RNA synthesis in developing nucleoli of human preimplantation embryos: a new concept of embryonic nucleologenesis. Development 1987;101:777–91.

    PubMed  CAS  Google Scholar 

  32. Camous S, Heyman Y, Meziou W, Menezo Y. Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J Reprod Fertil 1984;72:479–85.

    Article  PubMed  CAS  Google Scholar 

  33. Gandplfi F, Moor RM. Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J Reprod Fertil 1987; 81:23–8.

    Article  Google Scholar 

  34. Pinyopummintr T, Bavister BD. In vitro-matured/in vitro-fertilized bovine embryos can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol Reprod 1991;45:736–42.

    Article  PubMed  CAS  Google Scholar 

  35. Camous S, Kopecny V, Flechon JE. Autoradiographic detection of the earliest stage of 3H-uridine incorporation in the cow embryo. Biol Cell 1986; 58:195–200.

    PubMed  CAS  Google Scholar 

  36. King WA, Niar A, Chartrain I, Betteridge KJ, Guay P. Nucleolus organizer regions and nucleoli in preattachment bovine embryos. J Reprod Fertil 1988; 82:87–95.

    Article  PubMed  CAS  Google Scholar 

  37. Kopecny V, Flechon JE, Camous S, Fulka J. Nucleologenesis and the onset of transcription in the eight-cell bovine embryo: fine structural autoradiographic study. Mol Reprod Dev 1989;1:79–90.

    Article  PubMed  CAS  Google Scholar 

  38. Frei RE, Schultz GA, Church RB. Qualitative and quantitative changes in protein synthesis occur at the 8–16 cell stage of embryogenesis in the cow. J Reprod Fertil 1989;86:637–41.

    Article  PubMed  CAS  Google Scholar 

  39. Crosby IM, Gandolfi F, Moor RM. Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil 1988;82:769–75.

    Article  PubMed  CAS  Google Scholar 

  40. Barnes FL, First NL. Embryonic transcription in in vitro cultured bovine embryos. Mol Reprod Dev 1991;29:117–23.

    Article  PubMed  CAS  Google Scholar 

  41. Kopecny V, Flechon JE, Tomanek M, Camous S, Kanka J. Ultrastructural analysis of (3H)-uridine incorporation in early embryos of pig and cow [Abstract]. 9th Nucleolar Workshop, Cracow, 1985:31.

    Google Scholar 

  42. Freitag M, Dopke HH, Niemann H, Elsaesser F. 3H-uridine incorporation in early porcine embryos. Mol Reprod Dev 1991;29:124–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jarrell VL, Day BN, Prather RS. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol Reprod 1991;44:62–8.

    Article  PubMed  CAS  Google Scholar 

  44. Davis DL. Culture and storage of pig embryos. J Reprod Fertil Suppl 1985; 33:115–24.

    PubMed  CAS  Google Scholar 

  45. Taylor KD, Piko L. Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 1987;101:877–92.

    PubMed  CAS  Google Scholar 

  46. Fukui Y. Effects of sera and steroid hormones on development of bovine oocytes matured and fertilized in vitro and co-cultured with bovine oviduct epithelial cells. J Anim Sci 1989;67:1318–23.

    PubMed  CAS  Google Scholar 

  47. Eyestone WH, First NL. Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium. J Reprod Fertil 1989; 85:715–20.

    Article  PubMed  CAS  Google Scholar 

  48. Wiemer KE, Watson AS, Polanski V, McKenna A, Fick GH, Schultz GA. Effects of maturation and co-culture treatments on the developmental capacity of early bovine embryos. Mol Reprod Dev 1991;30:330–8.

    Article  PubMed  CAS  Google Scholar 

  49. Rappolee DA, Brenner CA, Schultz R, Mark D, Werb Z. Developmental expression of PDGF, TGF-α, and TGF-ß genes in preimplantation mouse embryos. Science 1988;241:1823–5.

    Article  PubMed  CAS  Google Scholar 

  50. Rappolee DA, Wang A, Mark D, Werb Z. Novel method for studying mRNA phenotypes in single or small numbers of cells. J Cell Biochem 1989;39:1–11.

    Article  PubMed  CAS  Google Scholar 

  51. Rappolee DA, Sturm K, Schultz GA, Pedersen RA, Werb Z. The expression of growth factor ligands and receptors in preimplantation mouse embryos. In: Heyner S, Wiley LM, eds. Early development and paracrine relationships. UCLA Symposia on Molecular and Cellular Biology, New York Series; vol. 117. New York: Alan R. Liss, 1990:11–26.

    Google Scholar 

  52. Fukui Y, Ono H. Effects of sera, hormones and granulosa cells added to culture medium for in vitro maturation, fertilization, cleavage and development of bovine embryos. J Reprod Fertil 1989;86:501–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sirard MA, Parrish JJ, Ware CB, Leibfried-Rutledge ML, First NL. The culture of bovine embryos to obtain developmentally competent embryos. Biol Reprod 1988;39:546–52.

    Article  PubMed  CAS  Google Scholar 

  54. Kim CI, Ellington JE, Foote RH. Maturation, fertilization and development of bovine oocytes in vitro using TCM-199 and a simple defined medium with co-culture. Theriogenology 1990;33:433–40.

    Article  PubMed  CAS  Google Scholar 

  55. Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL. Bovine in vitro fertilization with frozen-thawed sperm. Theriogenology 1986;25:591–600.

    Article  PubMed  CAS  Google Scholar 

  56. Schliwa M, Van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol 1981;90:222–35.

    Article  PubMed  CAS  Google Scholar 

  57. Valdimarsson G, Huebner E. Diethylene glycol distearate as an embedding medium for immunofluorescence microscopy. Biochem Cell Biol 1989; 67:242–5.

    Article  CAS  Google Scholar 

  58. Watson AJ, Kidder GM. Immunofluorescence assessment of the timing of appearance and cellular distribution of the Na/K-ATPase during mouse embryogenesis. Dev Biol 1988;126:80–90.

    Article  PubMed  CAS  Google Scholar 

  59. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1982:447.

    Google Scholar 

  60. Dean WL, Seufert AC, Schultz GA, et al. The small nuclear RNAs for pre-mRNA splicing are coordinately regulated during oocyte maturation and early embryogenesis in the mouse. Development 1989;106:325–34.

    PubMed  CAS  Google Scholar 

  61. Lobo SM, Marzluff WF, Seufert AC, et al. Localization and expression of U1 RNA in early mouse embryo development. Dev Biol 1988;127:349–61.

    Article  PubMed  CAS  Google Scholar 

  62. Hahnel A, Rappolee DA, Millan JL, et al. Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 1990;110:555–64.

    PubMed  CAS  Google Scholar 

  63. Telford NA, Hogan A, Franz C, Schultz GA. Expression of genes for insulin and insulin-like growth factors and receptors in early preimplantation mouse embryos and embryonal carcinoma cells. Mol Reprod Dev 1990;27:81–92.

    Article  PubMed  CAS  Google Scholar 

  64. Prather R, Simerly C, Schatten G, et al. U3 snRNPs and nucleolar development during oocyte maturation, fertilization and early embryogenesis in the mouse: U3 snRNA and snRNPs are not regulated coordinate with other snRNAs and snRNPs. Dev Biol 1990;138:247–55.

    Article  PubMed  CAS  Google Scholar 

  65. Dean WL, Schultz GA. Relocalization of small ribonucleoprotein particles (snRNPs) during the first cell cycle of mouse embryo development is independent of RNA synthesis, DNA synthesis and cytokinesis. Cell Differ Dev 1990;31:43–51.

    Article  PubMed  CAS  Google Scholar 

  66. Nash MA, Kozak S, Angerer L, et al. Sea urchin maternal and embryonic U1 RNAs are spatially segregated. J Cell Biol 1987;104:1133–42.

    Article  PubMed  CAS  Google Scholar 

  67. Watson AJ, Wiemer KE, Arcellana-Panlilio M, Schultz GA. U2 small nuclear RNA localization and expression during bovine preimplantation development. Mol Reprod Dev 1992;31:231–40.

    Article  PubMed  CAS  Google Scholar 

  68. Kelly D, Campbell WJ, Travis J, Rizzino A. Regulation and function of transforming growth factor beta (TGF-ß) during early mammalian development. J Cell Biol 1990;111:347a.

    Google Scholar 

  69. Slager HG, Lawson KA, Van Den Eijnden-Van Raaij AJM, DeLaat SW, Mummery CL. Differential localization of TGF-ß2 in mouse preimplantation and early postimplantation development. Dev Biol 1991;145:205–18.

    Article  PubMed  CAS  Google Scholar 

  70. Murray R, Choypik C, Lee F. Hemopoietic growth factor expression in pre-and post-implantation mouse embryos. J Cell Biochem 1990;14E:93.

    Google Scholar 

  71. Rappolee DA, Sturm KS, Schultz GA, et al. Expression and function of growth factor ligands and receptors in preimplantation mouse embryos. In: Schomberg DW, ed. Growth factors in reproduction. New York: Springer-Verlag, 1991:207–18.

    Google Scholar 

  72. Schultz GA, Dean WL, Telford NA, Rappolee DA, Werb Z, Pedersen RA. Changes in RNA and protein synthesis during development of the preimplantation mouse embryo. In: Heyner S, Wiley LM, eds. Early embryo development and paracrine relationships. New York: Alan R. Liss, 1990: 27–46.

    Google Scholar 

  73. Rosenblum HY, Mattson BM, Heyner S. Stage-specific insulin binding in mouse preimplantation embryos. Dev Biol 1986;116:261–3.

    Article  PubMed  CAS  Google Scholar 

  74. Harvey MB, Kaye PL. Visualization of insulin receptors on mouse preembryos. Reprod Fertil Dev 1991;3:9–15.

    Article  PubMed  CAS  Google Scholar 

  75. Mattson BA, Rosenblum HY, Smith RM, Heyner S. Autoradiographic evidence for insulin and insulin-like growth factor binding to early mouse embryos. Diabetes 1988;37:585–9.

    Article  PubMed  CAS  Google Scholar 

  76. Harvey MB, Kaye PL. IGF-II receptors are first expressed at the 2-cell stage of mouse development. Development 1991;111:1057–60.

    PubMed  CAS  Google Scholar 

  77. Wood SA, Kaye PL. Effects of epidermal growth factor on preimplantation mouse embryos. J Reprod Fertil 1989;85:575–82.

    Article  PubMed  CAS  Google Scholar 

  78. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA 1990;87:4756–60.

    Article  PubMed  CAS  Google Scholar 

  79. Watson AJ, Hogan A, Hahnel A, Wiemer KE, Schultz GA. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol Reprod Dev 1992;31:87–95.

    Article  PubMed  CAS  Google Scholar 

  80. Heyner S, Rao LV, Jarett L, Smith RM. Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev Biol 1989;134:48–58.

    Article  PubMed  CAS  Google Scholar 

  81. Heyner S, Smith RM, Schultz GA. Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. Bioessays 1989;11:171–6.

    Article  PubMed  CAS  Google Scholar 

  82. Werb Z. Expression of EGF and TGF-α genes in early mammalian development. Mol Reprod Dev 1990;27:10–15.

    Article  PubMed  CAS  Google Scholar 

  83. Larson RC, Ignotz GG, Currie WB. Defined medium containing TGF-ß and bFGF permits development of embryos beyond the “8-cell block.” J Reprod Fertil Abstr Ser 1990;4.

    Google Scholar 

  84. DeChiara TM, Efstratiadis A, Robertson EJ. A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature (London) 1990;345:78–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Watson, A.J., Hogan, A., Hahnel, A., Schultz, G.A. (1993). Activation of the Embryonic Genome: Comparisons Between Mouse and Bovine Development. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics