Skip to main content

Fluorescent Probes for the Acetylcholine Receptor Surface Environments

  • Chapter
Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

Abstract

The acetylcholine receptor (AchR) was the first neurotransmitter receptor to be identified and purified in an active form. It is a complex transmembrane glycoprotein present in the postsynaptic side of the neuromuscular junctions. When an action potential reaches the motor nerve terminals, acetylcholine is released into the synaptic cleft, where its local concentration can rise transiently to 10-4 to 10-3 M. Binding of Ach to specific sites located on the extracellular domains of the AchR molecules triggers the opening of short-lived cation channels, thus increasing the permeability of the postsynaptic membrane and causing the muscle fiber membrane to be depolarized beyond a critical threshold. The final result of this chain of events is muscle contraction. The AchR is present in high amounts in the electric organ of certain fishes. Using Torpedo (electric ray) electroplax as the starting material, one can purify milligram quantities of active protein, as well as substantial amounts of its constituent subunits. Moreover, a group of closely related protein toxins (α-neurotoxins) have been isolated from the venom of several Elapid snakes, which bind to the AchR with dissociation constants in the nanomolar to subnanomolar range [for review see Karlsson (1979) and Low (1979)]. The high affinity of α-neurotoxins for AchR, combined with their extreme specificity, has greatly facilitated the purification and characterization of AchR from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADS:

anthracene-1,5-disulfonic acid

AchR:

acetylcholine receptor

ANTS:

8-amino-l,3,6-naphthalene trisulfonate

α-Bgt:

α-bungarotoxin

Carb:

carbamylcholine

DPH:

l,6-diphenyl-l,3,5-hexatriene

MBTA:

4-(N-maleimide)benzyltrimethylammonium

NEM:

N-ethylmaleimide

OG:

ß-D-octylglucopyranoside

PM:

N-(1-pyrene)maleimide

PTSA:

1,3,6,8-pyrene tetrasulfonate

PySA:

pyrene-1-sulfonyl azide

PySAH:

N-(l-pyrene-sulfonyl)hexadecylamine

TMA-DPH:

l-[4-(trimethylamino)phenyl]-6-phenylhexa-l,3,5-triene

References

  • Anderson, D. J., Walter, P., and Blobel, G., 1982, Signal-recognition protein is required for the integration of acetylcholine receptor δ subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93: 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Andreasen, T. J., and McNamee, M. G., 1977, Phospholipase A inhibition of acetylcholine receptor function in Torpedo californica membrane vesicles, Biochem. Biophys. Res. Commun. 79: 958–965.

    Article  PubMed  CAS  Google Scholar 

  • Andreasen, T. J., Doerge, D. R., and McNamee, M. G., 1979, Effects of phospholipase A2 on the binding and ion permeability control properties of the acetylcholine receptor, Arch. Biochem. Biophys. 194: 468–480.

    Article  PubMed  CAS  Google Scholar 

  • Andrich, M. P., and Vanderkooi, J. M., 1976, Temperature dependence of l,6-diphenyl-l,3,5- hexatriene fluorescence in phospholipid artifical membranes, Biochemistry 15: 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids on cholate solution and during reconstitution in vesicles, J. Biol Chem. 256: 4377–4387.

    PubMed  CAS  Google Scholar 

  • Barrantes, F. J., 1983, Recent developments in the structure and function of the acetylcholine receptor, Int. Rev. Neurobiol. 24: 259–341.

    Article  PubMed  CAS  Google Scholar 

  • Brisson, A., and Unwin, P. M. T., 1985, Quaternary structure of the acetylcholine receptor, Nature 315: 474–477.

    Article  PubMed  CAS  Google Scholar 

  • Cash, D. J., and Hess, G. P., 1981, Quenched-flow technique with plasma membrane vesicles: Acetylcholine receptor mediated transmembrane ion flux, Anal. Biochem. 112: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J. P., Devillers-Thiery, A., and Chenouilli, P., 1984, Acetylcholine receptor: An al-losteric protein, Science 225: 1335–1345.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, J. H., and Martinez-Carrion, M., 1986, Labeling of functionally sensitive sulfhydryl containing domains of acetylcholine receptor from Torpedo californica membranes, J. Biol. Chem. 261: 10063–10072.

    PubMed  CAS  Google Scholar 

  • Clarke, J. H., Garcia-Borron, J. C., and Martinez-Carrion, M., 1987, (l-Pyrene)sulfonyl azide is a fluorescent probe for measuring the transmembrane topology of acetylcholine receptor subunits, Arch. Biochem. Biophys. 256: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor 7 subunit, Proc. Natl. Acad. Sci. U.S.A. 80: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic acetylcholine receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51: 491–530.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M., Eibl, H., and Barrantes, F. J., 1982, Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist induced state transitions in lipid vesicles, Biochemistry 21: 3622–3629.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M., Eibl, H., and Barrantes, F. J., 1984, Functional properties of the acetylcholine receptor incorporated in model lipid membranes, J. Biol. Chem. 259: 9188–9198.

    PubMed  CAS  Google Scholar 

  • Dalziel, A. W., Rollins, E. S., and McNamee, M. G., 1980, The effect of cholesterol on agonist induced flux in reconstituted acetylcholine receptor vesicles, FEBS Lett. 122: 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Damle, V. N., McLaughlin, M., and Karlin, A., 1978, Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 84: 845–851.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J. P., 1983, Complete mRNA sequence of the acetylcholine binding subunit from Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80: 2067–2071.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, D., Mihovilovic, M., Gonzalez-Ros, J. M., Ferragut, J. A., Richman, D., and Martinez-Carrion, M., 1984, A noncholinergic site directed monoclonal antibody can impair agonist induced ion flux in Torpedo californica acetylcholine receptor, Proc. Natl. Acad. Sci. U. S.A. 81: 7999–8003.

    Article  PubMed  CAS  Google Scholar 

  • Ellena, J. F., Blazing, M. A., and McNamee, M. G., 1983, Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor, Biochemistry 22: 5523–5535.

    Article  PubMed  CAS  Google Scholar 

  • Farach, M. C., and Martinéz-Carrion, M., 1983, A differential scanning calorimetry study of acetylcholine receptor-rich membranes from Torpedo californica, J. Biol. Chem. 258: 4166–4170.

    PubMed  CAS  Google Scholar 

  • Finer-Moore, J., and Stroud, R., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Fong, T. M., and McNamee, M. G., 1986, Correlation between acetylcholine receptor function and structural properties of membranes, Biochemistry 25: 830–840.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat, J., Montecucco, C., Bisson, R., and Changeux, J. P., 1985, Transmembrane topology of acetylcholine receptor subunits probed with photoreactive phospholipids, Biochemistry 24: 3121–3127.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ros, J. M., Calvo-Fernandez, P., Sator, V., and Martinez-Carrion, M., 1979a, Pyrene-sulfonyl azide as a fluorescent label for the study of protein-lipid boundaries of acetylcholine receptor in membranes, J. Supramol. Struct. 11: 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ros, J. M., Sator, V., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979b, Pyrenesulfonyl azide: A covalent probe permitting in vitro desensitization of labeled acetylcholine receptor rich membrane fragments from Torpedo californica, Biochem. Biophys. Res. Commun. 87: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ros, J. M., Llanillo, M., Paraschos, A., and Martinez-Carrion, M., 1982, Lipid environment of acetylcholine receptor from Torpedo californica, Biochemistry 21: 3467–3474.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ros, J. M., Farach, M. C., and Martinez-Carrion, M., 1983, Ligand induced effects at regions of acetylcholine receptor accessible to membrane lipids, Biochemistry 22: 3807–3811.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ros, J. M., Ferragut, J. A., and Martinez-Carrion, M., 1984, Binding of anti-acetylcho-line receptor antibodies inhibits the acetylcholine receptor mediated cation flux, Biochem. Biophys. Res. Commun. 120: 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Guy, R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45: 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, T., Sobel, A., Popot, J. L., and Changeux, J. P., 1980, Reconstitution of a functional acetylcholine receptor. Conservation of the conformational and allosteric transitions and recovery of the permeability response; role of lipids, Eur. J. Biochem. 110: 35–55.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Cash, D. J., and Aoshima, H., 1979, Acetylcholine receptor controlled ion fluxes in membrane vesicles investigated by fast reaction techniques, Nature 282: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Aoshima, H., Cash, D. J., and Lenchitz, B., 1981, Specific reaction rate of acetylcholine receptor controlled ion translocation: A comparison of measurements with membrane vesicles and with muscle cells, Proc. Natl. Acad. Sci. U.S.A. 78: 1361–1365.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Pasquale, F. B., Walker, J. W., and McNamee, M. G., 1982, Comparison of acetylcholine receptor controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetics measurements in the millisecond region, Proc. Natl. Acad. Sci. U.S.A. 79: 963–967.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R., and Stevens, C. F., 1980, Relation between structure and function of on channels, Comments Mol. Cell. Biophys. 1: 57–68.

    CAS  Google Scholar 

  • Huang, L. Y. M., Catterall, W. A., and Ehrenstein, G., 1978, Selectivity of cations and nonelec-trolytes for acetylcholine activated channels in cultured muscle cells, J. Gen. Physiol. 71: 397–410.

    Article  PubMed  CAS  Google Scholar 

  • Kanaoka, Y., Machida, M., Kokubun, H., and Sekine, T., 1968, Fluorescence and structure of proteins as measured by incorporation of fluorophore. III. Fluorescence characteristics of N-[p(2-benzoxazolyl)phenyl] maleimide and the derivatives, Chem. Pharm. Bull. (Tokyo) 16: 1747–1753.

    CAS  Google Scholar 

  • Kao, P. N., and Karlin, A., 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues, J. Biol. Chem. 261: 8085–8088.

    PubMed  CAS  Google Scholar 

  • Karlsson, E., 1979, Chemistry of protein toxins in snake venoms, in Handbook of Experimental Pharmacology (Ch.-Y. Lee, ed.), Vol. 52, pp. 159–212 (Springer-Verlag, Berlin).

    Google Scholar 

  • Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholine receptor mediated ion flux, Anal. Biochem. 135: 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, M., and Changeux, J. P., 1971, In vitro excitation of purified membrane fragments by cholinergic agonists, J. Membr. Biol. 6: 1–23.

    Article  CAS  Google Scholar 

  • Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37: 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky, M. W., and Stroud, R. M., 1979, Immunospecific identification and three dimensional structure of a membrane bound acetylcholine receptor from Torpedo californica, J. Mol. Biol. 128: 319–334.

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky, M. W., Heuser, J. E., and Stroud, R. M., 1980, Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica, J. Cell Biol. 85: 823–838.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, C. A., 1979, Ion concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction, J. Physiol. 286: 417–445.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Gullick, W., Conti-Tronconi, B., and Ellisman, M., 1980, Proteolytic nicking of the acetylcholine receptor, Biochemistry 19: 4791–4795.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311: 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Low, B. W., 1979, The three dimensional structure of postsynaptic snake neurotoxins: Consideration of structure and function, in Handbook of Experimental Pharmacology (Ch.-Y. Lee, ed.), Vol. 52, pp. 213–257, Springer-Verlag, Berlin.

    Google Scholar 

  • Martinez-Carrion, M., Sator, V., and Raftery, M. A., 1975, The molecular weight of an acetylcholine receptor isolated from Torpedo californica, Biochem. Biophys. Res. Commun. 65: 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Carrion, M., Gonzalez-Ros, J. M., Llanillo, M., and Paraschos, A., 1982, Acetylcholine receptors from electroplax membranes: In vitro and in situ properties, in Advances in Experimental Medicine and Biology (F. Bossa, E. Chiancone, A. Finnazi-Agro, and R. Strom, eds.), Vol. 148, pp. 209–224, Plenum Press, New York.

    Google Scholar 

  • Martinez-Carrion, M., Gonzalez-Ros, J. M., Mattingly, J. R., Ferragut, J. A., Farach, M. C., and Donnelly, D., 1984, Fluorescent probes for the study of acetylcholine receptor function, Biophys. J. 45: 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Middlemas, D. S., and Raftery, M. A., 1983, Exposure of the acetylcholine receptor to the lipid bilayer, Biochem. Biophys. Res. Commun. 115: 1075–1082.

    Article  PubMed  CAS  Google Scholar 

  • Mihovilovic, M., and Richman, D. P., 1984, Modification of α-bungarotoxin and cholinergic ligand binding properties of Torpedo acetylcholine receptor by a monoclonal anti-acetylcholine receptor antibody, J. Biol. Chem. 259: 15051–15059.

    PubMed  CAS  Google Scholar 

  • Moore, H. P., and Raftery, M. A., 1979, Reversible and irreversible interactions of an alkylating agonist with Torpedo californica acetylcholine receptor, Biochemistry 10: 1862–1867.

    Article  Google Scholar 

  • Moore, H. P., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77: 4509–4513.

    Article  PubMed  CAS  Google Scholar 

  • Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose response relations measured at second and millisecond times, Biochemistry 19: 2770–2779.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, D., Barchan, D., Safran, A., Gershoni, J. M., and Fuchs, S., 1986, Mapping of the α-bungarotoxin binding site within the subunit of acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 83: 3008–3011.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of a subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299: 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983a, Primary structure of the β and δ subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences, Nature 301: 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302: 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Paraschos, A., Gonzalez-Ros, J. M., and Martinez-Carrion, M., 1983, Absorption filtration: A tool for the measurement of ion tracer flux in native membranes and reconstituted lipid vesicles, Biochem. Biophys. Acta. 733: 223–233.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U., 1981, Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212: 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Popot, J. L., and Changeux, J. P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.

    PubMed  CAS  Google Scholar 

  • Prendergast, F. G., Haugland, R. P., Callahan, P. J., and Bodeau, D., 1981, l-[4-(Trimethylamino)phenyl]-6-phenylhexa-l,3,5-triene: Synthesis fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20: 7333–7338.

    Article  PubMed  CAS  Google Scholar 

  • Quast, U., Schimerlik, M., Lee, T., Witzemann, V., Blanchard, S., and Raftery, M. A., 1978,

    Google Scholar 

  • Ligand induced conformation changes in Torpedo californica membrane bound acetylcholine receptor, Biochemistry 17: 2405–2414.

    Google Scholar 

  • Raftery, M. A., Schmidt, J., Clark, D. G., and Wolcott, R. G., 1971, Demonstration of a specific α-bungarotoxin binding component in Electrophorus electricus electroplax membranes, Biochem. Biophys. Res. Commun. 65: 1622–1629.

    Article  Google Scholar 

  • Ratnam, M., and Lindstrom, J., 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122: 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam, M., Nguyen, D., Rivier, J., Sargent, P., and Lindstrom, J., 1986, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles, Biochemistry 25: 2633–2643.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, M. J., Cowburn, D., Prives, J. M., and Karlin, A., 1972, Affinity labeling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecylsulfate, Proc. Natl. Acad. Sci. U.S.A. 69: 1168–1172.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17: 2035–2038.

    Article  PubMed  CAS  Google Scholar 

  • Sator, V., Raftery, M. A., and Martinez-Carrion, M., 1978, AT-(3-pyrene)maleimide: A fluorescent probe for acetylcholine receptor-Triton X-100 aggregates, Arch. Biochem. Biophys. 190: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Sator, V., Gonzalez-Ros, J. M., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979a, Pyrene sulfonyl azide. A marker of acetylcholine receptor subunits in contact with membrane hydrophobic environment, Biochemistry 18: 1200–1206.

    Article  PubMed  CAS  Google Scholar 

  • Sator, V., Raftery, M. A., Thomas, J. K., and Martinez-Carrion, M., 1979b, Effect of cholinergic ligands and local anesthetics on acetylcholine receptor enriched preparations from Torpedo californica electroplax, Arch. Biochem. Biophys. 192: 250–259.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing deacetylphosphate, J. Biol. Chem. 249: 2652–2657.

    PubMed  CAS  Google Scholar 

  • Soler, G., Mattingly, J. R., and Martinez-Carrion, M., 1984, Effects of heating on the ion gating function and structural domains of the acetylcholine receptor, Biochemistry 23: 4630–4636.

    Article  PubMed  CAS  Google Scholar 

  • Strader, C. D., and Raftery, M. A., 1980, Topographical studies of Torpedo acetylcholine receptor subunits as a transmembrane complex, Proc. Natl. Acad. Sci. U.S.A. 77: 5807–5811.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., and Changeux, J. P., 1975, Interconversion between different states of affinity for acetylcholine of the cholinergic protein from Torpedo marmorata, Eur. J. Biochem. 55: 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Watters, D., and Maelicke, A., 1983, Organization of ligand binding sites at the acetylcholine receptor. A study with monoclonal antibodies, Biochemistry 22: 1811–1819.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., and Changeux, J. P., 1974a, Binding of Naja nigricollis [3H]α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. I. Binding of the tritiated α-neu-rotoxin in the absence of effector, Mol. Pharmacol. 10: 1–14.

    PubMed  CAS  Google Scholar 

  • Weber, M., and Changeux, J. P., 1974b, Binding of Naja nigricollis [3H]α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated α-neurotoxin, Mol. Pharmacol. 10: 15–34.

    PubMed  CAS  Google Scholar 

  • Weiland, G., and Taylor, P., 1979, Ligand specificity of state transitions in the cholinergic receptor: Behavior of agonists and antagonists, Mol. Pharmacol. 15: 197–212.

    PubMed  CAS  Google Scholar 

  • Weltman, J. K., Szaro, R. P., Frackelton, A. R., Jr., Dowben, R. M., Bunting, J. R., and Cathou, R. E., 1973, N-(3-pyrene) maleimide: A long lifetime fluorescent sulfhydryl reagent, J. Biol. Chem. 248: 3173–3177.

    PubMed  CAS  Google Scholar 

  • Wilson, P. T., Lentz, T. L., and Hawrot, E., 1985, Determination of the primary amino-acid sequence specifying the α-bungarotoxin binding site on the a subunit of the acetylcholine receptor from Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 82: 8790–8794.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. W., Yarbrough, L. Z., and Hsiuch, Y., 1976, N-(l-pyrene) maleimide: A fluorescent crosslinking reagent, Biochemistry 15: 2863–2868.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. P., Brown, F. F., Halsey, M. J., and Sigman, D. S., 1978, Volatile anesthetic facilitation of in vitro desensitization of membrane bound acetylcholine receptor from Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 75: 4563–4567.

    Article  PubMed  CAS  Google Scholar 

  • Young, E. F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z. W., and Stroud, R. M., 1985, Topological mapping of acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82: 626–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Martinez-Carrion, M., Clarke, J., Gonzalez-Ros, JM., Garcia-Borron, JC. (1988). Fluorescent Probes for the Acetylcholine Receptor Surface Environments. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics