Skip to main content

Structure and Dynamics of the Liver Microsomal Monoxygenase System

  • Chapter
Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

  • 152 Accesses

Abstract

Cell membranes regulate a variety of cellular processes ranging from permeability, transport, and excitability to intercellular interaction, morphological differentiation, and fusion. Numerous models have been advanced to characterize the organization of lipids and proteins in cell membranes. Today, there is substantial agreement on the “fluid mosaic” model (Singer and Nicholson, 1972), which emphasizes the dynamic behavior of the membrane components. Both lipids and proteins can undergo a variety of motions: rotational motion around the axis perpendicular to the plane of the membrane; lateral diffusion in the plane of the membrane; in addition, lipids can “flip-flop” (exchange from one monolayer to the other) and undergo trans-gauche conformational changes in the phospholipid acyl chains, which give rise to an increased segmental mobility toward the center of the bilayer. Since the fluid mosaic model has been proposed, its rather crude and generalizing picture has been filled with some details. The refined picture shows a dynamic membrane in which molecular associations are tightly controlled, and in which long-range lateral motions are surprisingly restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANS:

1-anilino-naphthlene sulfonate

ANM:

N-(1-anilinonaph-4yl)maleimide

DPH:

1,6-diphenyl-1,3,5-hexatriene

DMPC:

dimyristoylphosphatidylcholine

DOPC:

dioleylphosphatidylcholine

DPPC:

dipalmitoyphosphatidylcholine

E:

eosin

EPR:

electronparamagnetic

FITC:

fluorescein isothiocyanate

FRAP:

fluorescence recovery after photobleaching

I-a, I-b, I-c, I-d:

P-450 isozymes isolated from rat liver

LM-2, LM-4:

P-450 isozymesisolated from rabbit liver

NMR:

nuclear magnetic resonance

P-450:

microsomal cytochrome P-450

P-450b :

P-450 isozyme isolated from rat liver

PA:

dipalmitoylphosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acid

SDS-PAGE:

polyacrylamide gel electrophoresis

ST-EPR:

saturation transfer EPR

Tc :

temperature of the gel to liquid-crystalline phase transition

TRSP:

time-resolved spatial photometry

References

  • Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M., and Sabatini, D. D., 1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. U.S.A. 77: 965.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, R., Dao, N. T. N., Stiel, H., Schwarze, W., Friedrich, J., Jänig, G.-R., and Ruckpaul, K., 1983, Modification of cytochrome P-450 with fluorescein isothiocyanate, Biochim. Biophys. Acta. 745: 140–148.

    Article  PubMed  CAS  Google Scholar 

  • Bartosz, G., Szabo, G., Szollosi, J., and Damjanovich, S., 1981, Aging of the erythrocyte. XI. Fluorescence studies on changes in membrane properties, Mech. Aging Dev. 16: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Bernert, J. T., Jr., and Groce, D. F., 1984, Acute response of rat liver microsomal lipids, lipid peroxidation, and membrane anisotropy to a single oral dose of polybrominated biphenyls, J. Toxicol. Environ. Health 13: 673–687.

    Article  PubMed  CAS  Google Scholar 

  • Black, S. D., and Coon, M. J., 1982, Structural features of liver microsomal NADPH-cyto-chrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region, J. Biol. Chem. 257: 5929–5938.

    PubMed  CAS  Google Scholar 

  • Black, S. D., French, J. S., Williams, C. H., Jr., and Coon, M. J., 1979, Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM, Biochem. Biophys. Res. Commun. 91: 1528–1535.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1978, Measurement of protein rotational diffusion, Methods Enzymol. 54: 447–461.

    Google Scholar 

  • Chiang, Y.-L., and Coon, M. J., 1979, Comparative study of two highly purified forms of liver microsomal cytochrome P-450: Circular dichroism and other properties, Arch. Biochem. Biophys. 195: 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236: 39–43.

    PubMed  CAS  Google Scholar 

  • De Pierre, J. W., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum, Biochim. Biophys. Acta. 415: 411–472.

    Google Scholar 

  • De Pierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46: 201–262.

    Article  Google Scholar 

  • Dobretsov, G. E., Borschevskaya, T. A., Petrov, V. A., and Vladimirov, Y. A., 1977, The increase of phospholipid bilayer rigidity after lipid peroxidation, FEBS Lett. 84: 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Eichenberger, K., Böhni, P. C., Winterhalter, K. H., Kawato, S., and Richter, C., 1982, Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain, FEBS Lett. 142: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Cheeseman, K. H., Dianzani, M. U., Poli, G., and Slater, T. F., 1982, Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes, Biochem. J. 208: 129–140.

    PubMed  CAS  Google Scholar 

  • Ford, R., and Barber, J., 1980, The use of diphenyl hexatriene to monitor the fluidity of the thylakoid membrane, Photobiochem. Photobiophys. 1: 263–270.

    CAS  Google Scholar 

  • Fujii-Kuriyama, Y., Mizukami, Y., Kawajiri, K., Sogawa, K., and Muramatsu, M., 1982, Primary structure of a cytochrome P-450: Coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver, Proc. Natl. Acad. Sci. U.S.A. 79: 2793–2797.

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa, K., Chida, H., Tokumura, A., and Tsukatani, H., 1981, Antioxidative effect of alphα-tocopherol incorporation into lecithin liposomes on ascorbic acid-Fe2+-induced lipid peroxidation, Arch. Biochem. Biophys. 206: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Galanopoulou, G., Williams, W. P., and Quinn, P. J., 1982, Structural studies of plant membrane lipid dispersions subjected to autoxidation in the presence of decomposing peroxy-chromate, Biochim. Biophys. Acta. 713: 315–322.

    CAS  Google Scholar 

  • Galeotti, T., Borrello, S., Palombini, G., Masotti, L., Ferrari, M. B., Cavatorta, P., Arcioni, A., Stremmenos, C., and Zannoni, C., 1984a, Lipid peroxidation and fluidity of plasma membranes from rat liver and Morris hepatoma 3924A, FEBS Lett. 169: 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Galeotti, T., Borrello, S., Minotti, G., Palombini, G., Masotti, L., Sartor, G., Cavatorta, P., Arcioni, A., and Zannoni, C., 1984b, Lipid composition, physical state, and lipid peroxidation in tumour membranes, Toxicol. Pathol. 12: 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Gallay, J., Vincent, M., de Paillerets, C., and Alfsen, A., 1981, Relationship between the activity of the 3β-hydroxysteroid dehydrogenase from bovine adrenal cortex microsomes and membrane structure, J. Biol. Chem. 256: 1235–1241.

    PubMed  CAS  Google Scholar 

  • Gallay, J., Vincent, M., and Alfsen, A., 1982, Dynamic structure of bovine adrenal cortex microsomal membranes studied by time-resolved fluorescence anisotropy of all-trans-1,6-diphenyl-l,3,5-hexatriene, J. Biol. Chem. 257: 4038–4041.

    PubMed  CAS  Google Scholar 

  • Garfinkel, D., 1958, Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions, Arch. Biochem. Biophys. 77: 493–509.

    Article  PubMed  CAS  Google Scholar 

  • Greinert, R., and Stier, A., 1980, Rotational diffusion of cytochrome P450 in a reconstituted system measured by depolarization of delayed fluorescence, in Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J.-A. Gustafsson et al., eds.), pp. 591–594, Elsevier/ North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Greinert, R., Staerk, H., Stier, A., and Weiler, A., 1979, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range, J. Biochem. Biophys. Methods. 1: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Greinert, R., Finch, S. A. E., and Stier, A., 1982a, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding, Biosci. Rep. 2: 991–994.

    Article  PubMed  CAS  Google Scholar 

  • Greinert, R., Finch, S. A. E., and Stier, A., 1982b, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence polarization, Xenobiotica 12: 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., and Davidson, N. K., 1982, Interaction of epoxide hydrolase with itself and other microsomal proteins, Arch. Biochem. Biophys. 215: 462–477.

    Article  PubMed  CAS  Google Scholar 

  • Gum, J. R., and Strobel, H. W., 1979, Purified NADPH-cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles, J. Biol. Chem. 254: 4177–4185.

    PubMed  CAS  Google Scholar 

  • Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1982, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030–7036.

    PubMed  CAS  Google Scholar 

  • Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced crosslinking, J. Biol. Chem. 258: 8588–8594.

    PubMed  CAS  Google Scholar 

  • Gut, J., Kawato, S., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1985, Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes, Biochim. Biophys. Acta. 817: 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, F. S., and Ozols, J., 1983, The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450, J. Biol. Chem. 258: 4195–4201.

    PubMed  CAS  Google Scholar 

  • Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Hogeboom, G. H., 1949, Cytochemical studies of mammalian tissues. The distribution of diphospho-pyridine nucleotide-cytochrome c reductase in rat liver fractions, J. Biol. Chem. 177: 847–858.

    PubMed  CAS  Google Scholar 

  • Hogeboom, G. H., and Schneider, W. C., 1950, Cytochemical studies of mammalian tissues. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver, J. Biol. Chem. 186: 417–427.

    PubMed  CAS  Google Scholar 

  • Horecker, B. L., 1950, Triphosphopyridine nucleotide-cytochrome c reductase in liver, J. Biol. Chem. 183: 593–605.

    CAS  Google Scholar 

  • Inouye, K., and Coon, M. J., 1985, Properties of the tryptophan residue in rabbit liver microsomal cytochrome P-450 isozyme 2 as determined by fluorescence, Biochem. Biophys. Res. Commun. 128: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Kapitza, H. G., and Jacobson, K. A., 1986, Lateral motion of membrane proteins, in Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), pp. 345–375, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1981, Rotation of cytochrome oxidase in phospholipid vesicles. Investigation of interactions between cytochrome oxidase and between cytochrome oxidase and cytochrome bc1 complex, J. Biol. Chem. 256: 7518–7527.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Lehner, C., Müller, M., and Cherry, R. J., 1982a, Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility, J. Biol. Chem. 257: 6470–6476.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982b, Rotation of cytochrome P-450.I. Investigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023–7029.

    PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., Kawato, S., Ikegami, S., and Orii, Y., 1981, The effect of cytochrome oxidase on lipid dynamics. A nanosecond fluorescence depolarization study, Biochim. Biophys. Acta. 647: 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, M., 1958, Pigments of rat liver microsomes, Arch. Biochem. Biophys. 75: 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Koppel, D. E., and Sheetz, M. P., 1983, A localized pattern photobleaching method for the concurrent analysis of rapid and slow diffusion processes, Biophys. J. 43: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, B. C., Rehorek, M., Häuser, H., Winterhalter, K. H., and Richter, C., 1985, Decreased lipid order induced by microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in model membranes: Fluorescence and electron spin resonance studies, Biochemistry 24: 2889–2895.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. J., and Kaminsky, L. S., 1986, Fluorescence probing of the function-specific cysteines of rat microsomal NADPH-cytochrome P-450 reductase, Biochem. Biophys. Res. Commun. 134: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Leighton, J. K., De Brunner-Vossbrinck, B. A., and Kemper, B., 1984, Isolation and sequence analysis of three cloned cDNAs from rabbit liver proteins that are related to rabbit cytochrome P-450 (form 2), the major phenobarbital-inducible form, Biochemistry 23: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Lemos-Chiarandini, C. D., Frey, A. B., Sabatini, D. D., and Kreibich, G., 1987, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209–219.

    Article  PubMed  Google Scholar 

  • Lu, A. Y., Junk, K. W., and Coon, M. J., 1969, Resolution of the cytochrome P-450-containing ω- hydroxylation system of liver microsomes into three components, J. Biol. Chem. 244: 3714–3721.

    PubMed  CAS  Google Scholar 

  • Masotti, L., Cavatorta, P., Ferrari, M. B., Casali, E., Arcioni, A., Zannoni, C., Borrello, S., Minotti, G., and Galeotti, T., 1986, O2-dependent lipid peroxidation does not affect the molecular order in hepatoma microsomes, FEBS Lett. 198: 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, S., Masuda, R., Omori, K., Negishi, M., and Tashito, Y., 1981, Distribution and induction of cytochrome P-450 in rat liver nuclear envelope, J. Cell Biol. 91: 212–220.

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh, P. R., Kawato, S., Freedman, R. B., and Cherry, R. J., 1980, Evidence from cross-linking and rotational diffusion studies that cytochrome P-450 can form molecular aggregates in rabbit-liver microsomal membranes, FEBS Lett. 122: 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto, Y., Kinosita, K., Jr., Ikegami, A., Kawai, N., Ichihara, I., and Shibata, Y., 1983, Possible association of NADPH-cytochrome P-450 reductase and cytochrome P-450 in reconstituted phospholipid vesicles, Biochemistry 22: 3586–3594.

    Article  PubMed  CAS  Google Scholar 

  • Oesch, F., and Daly, J., 1972, Conversion of naphthalene to tows-naphthalene dihydrodiol: Evidence for the presence of a coupled aryl monooxygenase-epoxide hydrase system in hepatic microsomes, Biochem. Biophys. Res. Commun. 46: 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  • Ohyashiki, T., Ohtsuka, T., and Mohri, T., 1986a, A change in the lipid fluidity of the porcine intestinal brush-border membranes by lipid peroxidation. Studies using pyrene and stearic acid derivatives, Biochim. Biophys. Acta. 861: 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Ohyashiki, T., Ohta, A., Ohtsuka, T., and Mohri, T., 1986b, Effects of lipid peroxidation on the membrane-bound ATPases and lipid fluidity of porcine intestinal brush border membranes, J. Pharmacobiodyn. 9: s–124.

    Google Scholar 

  • Ohyashiki, T., Ushiro, H., and Mohri, T., 1986c, Effect of α-tocopherol on the lipid peroxidation and fluidity of porcine intestinal brush-border membranes, Biochim. Biophys. Acta. 858: 294–300.

    Article  PubMed  CAS  Google Scholar 

  • Omata, Y., and Ueno, Y., 1985, Fluorescence energy transfer measurements of the complexes of aflatoxin B, and cytochrome P-450, Biochem. Biophys. Res. Commun. 129: 493–498.

    Article  PubMed  CAS  Google Scholar 

  • Omata, T., Ueno, Y., and Aibara, K., 1986, Conformational change of cytochrome P-450 indicated by the measurement of fluorescence-energy transfer, Biochim. Biophys. Acta. 870: 392–400.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., 1986, Cytochrome P-450 Structure, Mechanism, and Biochemistry, Plenum Press, New York.

    Google Scholar 

  • Palade, G. E., and Siekevitz, P., 1956, Liver microsomes. An integrated morphological and biochemical study, J. Biophys. Biochem. Cytol. 2: 171–200.

    Article  PubMed  CAS  Google Scholar 

  • Patel, J. M., and Block, E. R., 1986, Nitrogen dioxide-induced changes in cell membrane fluidity and function, Am. Rev. Respir. Dis. 134: 1196–1202.

    PubMed  CAS  Google Scholar 

  • Peters, R., Peters, J., Tews, K. H., and Bahr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta. 367: 282–294.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A. H., and Langdon, R. G., 1962, Hepatic triphosphopyridine nucleotide-cytochrome c reductase: Isolation, characterization, and kinetic studies, J. Biol. Chem. 237: 2652–2660.

    PubMed  CAS  Google Scholar 

  • Porter, T. D., and Kasper, C. B., 1985, Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains, Proc. Natl. Acad. Sci. U.S.A. 82: 973–977.

    Article  PubMed  CAS  Google Scholar 

  • RaziNaqvi, K., Rodriguez, J. G., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature New Biol. 245: 249–254.

    Article  CAS  Google Scholar 

  • Rice-Evans, C., and Hochstein, P., 1981, Alterations in erythrocyte membrane fluidity by phenylhydrazine-induced peroxidation of lipids, Biochem. Biophys. Res. Commun. 100: 1537–1542.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans, C., Baysal, E., Pashby, D. P., and Hochstein, P., 1985, t-Butyl hydroperoxide-induced perturbations of human erythrocytes as a model for oxidant stress, Biochim. Biophys. Acta. 815: 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Richter, C., Winterhalter, K. H., and Cherry, R. J., 1979, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Saffman, P. C., and Delbrück, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. U.S.A. 72: 3111–3113.

    Article  PubMed  CAS  Google Scholar 

  • Sato, R., Nishibayashi, H., and Ito, A., 1969, Characterization of two hemoproteins of liver microsomes, in Microsomes and Drug Oxidations (J. R. Gilette, A. H. Conney, G. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 111–132, Academic Press, New York.

    Google Scholar 

  • Schwarz, D., Pirrwitz, J., and Ruckpaul, K., 1982, Rotational diffusion of cytochrome P-450 in the microsomal membrane—Evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy, Arch. Biochem. Biophys. 216: 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Schwarze, W., Jänig, G. R., Berhardt, R., and Ruckpaul, K., 1983a, Topological studies on cytochrome P-450 with fluorescence methods, Studio Biophys. 93: 233–234.

    CAS  Google Scholar 

  • Schwarze, W., Bernhardt, R., Jänig, G. R., and Ruckpaul, K., 1983b, Fluorescent energy transfer measurements on fluorescein isothiocyanate modified cytochrome P-450 LM2, Biochem. Biophys. Res. Commun. 113: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., 1984, Membrane fluidity in malignancy, adversative and recuperative, Biochim. Biophys. Acta. 738: 251–261.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Bahrenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta. 515: 367–394.

    PubMed  CAS  Google Scholar 

  • Singer, S., and Nicholson, G., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Stier, A., Finch, S. A. E., Greinert, R., and Taniguchi, H., 1985, Membrane protein interactions, in Cytochrome P-450, Biochemistry, Biophysics, and Induction (L. Vereczky and K. Magyar, eds.), pp. 139–146,

    Google Scholar 

  • Strittmatter, C. F., and Ball, E. G., 1952, A hemochromogen component of liver microsomes, Proc. Natl. Acad. Sci. U.S.A. 38: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, P., and Velick, S. F., 1956a, The isolation and properties of microsomal cytochrome, J. Biol. Chem. 221: 253–264.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., and Velick, S. F., 1956b, A microsomal cytochrome reductase specific for di- phosphopyridine nucleotide, J. Biol. Chem. 221: 277–286.

    PubMed  CAS  Google Scholar 

  • Taniguchi, H., Imai, Y., and Sato, R., 1980, Protein-protein and lipid-protein interactions in a reconstituted liver microsomal monooxygenase system, in Microsomes, Drug Oxidations, and Chemical Carcinogenesis (M. J. Coon, A. H. Conney, R. W. Eastbrook, H. V. Gelboin, J. R. Gilette, and P. J. O’Brien, eds.), pp. 537–540, Academic Press, New York.

    Google Scholar 

  • Tarr, G. E., Black, S. D., Fujita, V. S., and Coon, M. J., 1983, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. U.S.A. 80: 6552–6556.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D., 1978, Large-scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence, Biophys. J. 24: 439–462.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D., 1986, Rotational diffusion of membrane proteins, in Techniques for the Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), pp. 377–431, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Thomas, P. E., Lu, A. Y. H., West, S. B., Ryan, D., Miwa, G. T., and Levin, W., 1977, Accessibility of cytochrome P450 in microsomal membranes: Inhibition of metabolism by antibodies to cytochrome P450, Mol. Pharmacol. 13: 819–831.

    PubMed  CAS  Google Scholar 

  • Vlasuk, G. P., Ghrayeb, J., Ryan, D., Reik, L., Thomas, P. E., Levin, W., and Waltz, F. G., Jr., 1982, Multiplicity, strain differences, and topology of phenobarbital-induced cytochrome P-450 in rat liver microsomes, Biochemistry 21: 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, F., and Lumper, L., 1983, Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syw-9,10-dioxabimane, Biochem. J. 215: 159–166.

    PubMed  CAS  Google Scholar 

  • Wang, H.-P., and Kimura, T., 1976, Purification and characterization of adrenal cortex mitochondrial cytochrome P-450 specific for cholesterol side chain cleavage activity, J. Biol. Chem. 251: 6068–6074.

    PubMed  CAS  Google Scholar 

  • Williams, C. H., and Kamin, H., 1962, Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver, J. Biol. Chem. 237: 587–595.

    PubMed  CAS  Google Scholar 

  • Wu, E.-S., and Yang, C. S., 1984, Lateral diffusion of cytochrome P-450 in phospholipid bilayers, Biochemistry 23: 28–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Richter, C., Gut, J., Kunz, B.C. (1988). Structure and Dynamics of the Liver Microsomal Monoxygenase System. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics