Skip to main content

Part of the book series: Springer Study Edition ((SSE))

  • 211 Accesses

Abstract

In warm-blooded animals water makes up about 60 percent of the body weight and exists as a solution of organic and mineral substances. This water is in constant exchange with the environment as a result of periodic uptake from the gut and continual loss through the skin, respiratory passages, and kidney. Within the body the water is distributed in several more or less discrete compartments whose contents are called the “body fluids.” The anatomical boundaries separating these compartments and the differences in the solutes present in each are of fundamental biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, E. F. Measurements of water drinking in dogs. Amer. J. Physiol. 125, 75 (1939).

    Google Scholar 

  2. Adolph, E. F. Physiology of wan in the desert. New York: Interscience (1947).

    Google Scholar 

  3. Anderson, B. The effect of injections of hypertonic NaCl-solutions into different parts of the hypothalamus of goats. Acta Physiol. Scand. 28, 188 (1953).

    Google Scholar 

  4. Anderson, B. and B. Larsson. Influence of local temperature changes in the preoptic area and rostral hypothalamus on the regulation of food and water intake. Acta Physiol. Scand. 52, 75 (1961).

    Article  Google Scholar 

  5. Arndt, J. O. Diuresis induced by water infusion into the carotid loop and its inhibition by small hemorrhage. The competition of volume- and osmo- control. Pflugers Arch. Physiol. 282, 313 (1965).

    Article  Google Scholar 

  6. Arndt, J. O., and O. H. Gauer. Diuresis induced by water infusion into the carotid loop of unanesthetized dogs. Pflugers Arch. Physiol. 282, 301 (1965).

    Article  CAS  Google Scholar 

  7. Arons, W. L., R. J. Vanderlinde, and A. K. Solomon. The simultaneous measurement of exchangeable body sodium and potassium utilizing ion exchanges chromatography. J. Clin. Invest. 33, 1001 (1954).

    Article  PubMed  CAS  Google Scholar 

  8. August, J. Th., and D. H. Nelson. Adjustment to aldosterone of desoxy-corticosterone acetate induced sodium retention in patients with Addison’s disease. J. Clin. Invest. 2, 1964 (1959).

    Google Scholar 

  9. August, J. T., D. H. Nelson, and G. W. Thorn. Response of normal subjects to large amounts of aldosterone. J. Clin. Invest. 37: 1549 (1958).

    Article  PubMed  CAS  Google Scholar 

  10. Bentzel, C. J., and A. K. Solomon. Osmotic properties of mitochondria. J. Gen. Phys. 50, 1547 (1967).

    Article  CAS  Google Scholar 

  11. Bernard, Cl. Leçons sur les phénomènes de la Vie Commune aux animaux et aux végétaux. Paris: Baillière(1878).

    Google Scholar 

  12. Bombard, A. La servie prolongée en mer. Rapport technique de l’expérience de survie prolongée en mer à bord de l’Hérétique, en 1952. Editions de Paris (1954).

    Google Scholar 

  13. Code, C. F., P. Bass, G. B. McClary, L. Newnum, and A. L. Orvis. Absorption of water, sodium, and potassium in small intestine of dogs. Am. J. Physiol. 199, 281 (1960).

    PubMed  CAS  Google Scholar 

  14. Cook, J. S. Non-solvent water in human erythrocytes. J. Gen. Physiol. 50, 1311 (1967).

    Article  PubMed  CAS  Google Scholar 

  15. Cross, B. A., and J. D. Green. Activity of single neurons in the hypothalamus: Effect of osmotic and other stimuli. J. Physiol., London 148, 554 (1959).

    CAS  Google Scholar 

  16. Davies, R. E., H. L. Kornberg, and G. M. Wilson. The determination of sodium in bone. Biochem. J. 52, 15 (1952).

    Google Scholar 

  17. Deane, N. Intracellular water in man. J. Clin. Invest. 30, 1469 (1951).

    Article  PubMed  CAS  Google Scholar 

  18. Diamond, J. M. The mechanism of isotonic water absorption and secretion. Symp. Soc. Exp. Biol. 19, 329 (1965).

    PubMed  CAS  Google Scholar 

  19. Edelmann, I. S., A. H. James, L. Brooks, and F. D. Moore. Body sodium and potassium. IV. The normal exchangeable sodium, its measurement and magnitude. Metabolism 3, 530 (1954).

    Google Scholar 

  20. Edelman, I. S. and J. Leibman. Anatomy of body water and electrolytes. Amer. J. Med. 27, 256 (1959).

    Article  PubMed  CAS  Google Scholar 

  21. Ellinghaus, K. Elektrolyt- und Wasserbilanz unter der Wirking von DOC A bei unterschiedlicher oraler Na-Zufuhr an Hunden. Inaug. Dissert. München (1969).

    Google Scholar 

  22. Fenn, W. O., T. R. Noonan, L. J. Mullins, and L. F. Haege. The exchange of radioactive potassium with body potassium. Am. J. Physiol. 135, 149 (1941).

    CAS  Google Scholar 

  23. Gauer, O. H., and J. P. Henry. Beitrag zur Homöostase des extraarteriellen Kreislaufs. Klin. Wschr. 34, 356 (1956).

    Article  PubMed  CAS  Google Scholar 

  24. Gauer, O. H. and J. P. Henry. Circulatory basis of fluid volume control. Physiol. Rev. 43, 423 (1963).

    PubMed  CAS  Google Scholar 

  25. Gregersen, M. I. Blood volume. Ann Rev. Physiol. 13, 397 (1951).

    Article  CAS  Google Scholar 

  26. Haberich, F. J., O. Aziz, and P. E. Nowack. Fliissigkeitsspeicherung in der Leber nach Enteraler Wasserresorption. Pflugers Arch. Physiol. 288, 306 (1966).

    Google Scholar 

  27. Haberich, F. J., O. Aziz and W. Ohm. Untersuchungen zur Spezifität des Osmorezeptors in der Leber. Pflugers Arch. Physiol. 294, 36 (1967).

    Google Scholar 

  28. Hall, F. G. The vital limit of certain animals. Biol. Bull. 42, 30 (1922).

    Article  Google Scholar 

  29. Hevesey, G., and E. Hofer. Die Verweilzeit des Wassers im menschlichen Körper; untersucht mit Hilfe von ‘schwerem’ Wasser als Indikator. Klin’ Wschr. 13, 1524 (1934).

    Google Scholar 

  30. Heyerdahl, T. Kon-Tiki: Across the Pacific by Raft. Chicago: Rand McNally, 132–133(1950).

    Google Scholar 

  31. Jewell, P. A., and E. B. Verney. An experimental attempt to determine the site of neurohypophyseal osmoreceptors in the dog. Phil. Trans. 240, 197 (1957).

    Google Scholar 

  32. Keck, W., H. Brechtelbauer, and K. Kramer. Wasser- und Na-Ausscheidung nach isotonen Kochsalz-Infusionen bei wachen Hunden mit verschie¬denem Natriumbestand. Pflugers Arch. Physiol. 311, 119 (1969).

    Article  CAS  Google Scholar 

  33. Kerpel-Fronius, E., and F. Leovey. Über die Störung der Osmo-Regulation bei der experimentellen Exsikkose. Arch. Kinderheilkunde 94, 9 (1931).

    Google Scholar 

  34. Keys, A., and J. Brozek. Body fat in adult man. Physiol, Rev. 33, 245 (1953).

    CAS  Google Scholar 

  35. Kruhoefer, P. Inulin as an indicator for the extracellular space. Acta Physiol. Scand. 11, 16 (1946).

    Google Scholar 

  36. Ladell, W. S. S. Effects on man of restricted water-supply. Brit. M. Bull. 5, 9–13 (1947).

    Google Scholar 

  37. Ladell, W. S. S. The effects of water and salt intake upon the performance of men working in hot and humid environments. J. Physiol. 127, 11 (1955).

    PubMed  CAS  Google Scholar 

  38. Ling, N., M. M. Ochsenfeld, and G. Karreman. Is the cell membrane a universal rate-limiting barrier to the movement of water between the living cell and its surrounding medium ? J. Gen. Phys. 50, 1807 (1967).

    Article  CAS  Google Scholar 

  39. Ljunggren, H., D. Ikkos, and R. Luft. Studies on body composition. I. Body fluid compartments and exchangeable potassium in normal males and females. Acta Endocrinol. 25, 187 (1957).

    PubMed  CAS  Google Scholar 

  40. Love, A. H. G., T. G. Mitchell, and R. A. Philipps. Water and sodium absorption in the human intestine. J. Physiol. 195, 133 (1968).

    PubMed  CAS  Google Scholar 

  41. Manery, J. F., I. S. Danielson, and A. B. Hastings. Connective tissue electrolytes. J. Biol. Chem. 124, 359 (1938).

    Google Scholar 

  42. Miller, H., and G. M. Wilson. The measurement of exchangeable sodium in man using the isotope 24Na. Clin. Sci. 12, 97 (1958).

    Google Scholar 

  43. Moore, F. D. Determination of total body water and solids with isotopes. Science 104, 157 (1946).

    Google Scholar 

  44. O’Meara, M. P., L. W. Birkenfeld, F. A. Gotch and I. S. Edelman. The equilibration of radiosodium (24Na), radio-potassium (42K), and deuterium oxide (D20) in hydropic human subjects. J. Clin. Invest. 36, 784 (1957).

    Google Scholar 

  45. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion, and molecular sieving through peripheral capillary membranes. Am. J. Physiol. 167, 13(1951).

    Google Scholar 

  46. Pauling, L. Die Natur der chemischen Bindung. Verlag Chemie, Weinheim/ Bergstr. (1962).

    Google Scholar 

  47. Peters, J. P. Water exchange. Physiol. Rev. 24, 391 (1944).

    Google Scholar 

  48. Porat, von B. Blood volume determination with Evans-blue dye method. Acta Med. Scandinav. (Suppl. 256 ) 140, 1 (1951).

    Google Scholar 

  49. Pfeffer, W. Osmotische Untersuchungen. 2. Aufl. Leipzig: Engelmann. (1921).

    Google Scholar 

  50. Reinhardt, H. W., and D. W. Behrenbeck, Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Mitt: Die Bedeutung des Extrazellulär-raumes für die Einstellung der Natrium-Tagesbilanz. Pflugers Arch. Physiol. 295, 266 (1967).

    Article  CAS  Google Scholar 

  51. Robinson, C. V., W. L. Arons, and A. K. Solomon. An improved method for simultaneous determination of exchangeable body sodium and potassium. J. Clin. Invest. 34, 134 (1955).

    Article  PubMed  CAS  Google Scholar 

  52. Robinson, E. A., and E. F. Adolph. Pattern of normal water drinking in dogs. Am. J. Physiol. 139, 39 (1943).

    CAS  Google Scholar 

  53. Robinson, S., and A. H. Robinson. Chemical composition of sweat. Physiol. Rev. 34, 202 (1954).

    Google Scholar 

  54. Rothman, S. Physiology and biochemistry of the skin. Chicago Press: Chicago University. (1954).

    Google Scholar 

  55. Schmidt-Nielsen, B., K. Schmidt-Nielsen, T. R. Houpt, and S. A. Jarnum. Water balance of the camel. Am. J. Physiol. 185, 185 (1956).

    PubMed  CAS  Google Scholar 

  56. Schwiegk, H., and G. Riecker. Pathophysiologic der Herzinsuffiziens. In Handb. inn. Med. Bd. IX, 1. Berlin-Göttingen-Heidelberg: Springer- Verlag (1960).

    Google Scholar 

  57. Smith, H. W. From fish to philosopher. The story of our internal environment. Boston, Mass.: Little, Brown & Co. (1953).

    Google Scholar 

  58. Smyth, D. H. Water movement across the mammalian gut. Symp. Soc. Exp. Biol. XIX. 307 (1965).

    Google Scholar 

  59. Steele, J. M., E. Y. Berger, M. F. Dunnung, and B. B. Brodie. Total body water in man. Am. J. Physiol. 162, 313 (1950).

    PubMed  CAS  Google Scholar 

  60. Verney, E. B. Antidiuretic hormone and the factors which determine its release. Proc. Roy. Soc. London 135, 25 (1947).

    Article  CAS  Google Scholar 

  61. Volhardt, F., and E. Schütte. Über die Verträglichkeit von Meerwasser. Dtsch. Med. Wschr. 75, 1425 (1950).

    Article  PubMed  CAS  Google Scholar 

  62. Weir, E. G., and A. B. Hastings. The distribution of bromide and chloride in tissues and body fluids. J. Biol. Chem. 129, 547 (1939).

    CAS  Google Scholar 

  63. Widdowson, E. M., R. A. McCance, and C. M. Spray. The chemical composition of the human body. Clin. Sci. 10, 113 (1951).

    CAS  Google Scholar 

  64. Wolf, A. V. Thirst. C. C. Thomas: Springfield (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Deetjen, P., Boylan, J.W., Kramer, K. (1975). Salt and Water Balance. In: Physiology of the Kidney and of Water Balance. Springer Study Edition. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9375-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9375-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90048-3

  • Online ISBN: 978-1-4613-9375-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics