Skip to main content

Low Temperature Thermal Conduction in Solids

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 30))

Abstract

The two major carriers of heat in solids are phonons and free electrons. Lattice waves or phonons carry heat in all solids, electrons in metals and alloys. In the case of highly conducting or pure metals, the electronic component is often so large as to dominate the conduction process. In alloys and in metals of lower conductivity, the lattice component is usually an appreciable fraction of the total. In insulators (which at low temperatures include semiconductors) the thermal conductivity is entirely due to lattice waves. There are, in principle, other carriers of heat, such as mobile magnetic excitations and internal electromagnetic radiation. Radiation is usually negligible at low temperatures, but can be important at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Childs, L.J. Ericks and R.L. Powell, “Thermal Conductivity of Solids at Room Temperature and Below”, National Bureau of Standards Monograph 131, Washington (1973).

    Google Scholar 

  2. P.G. Klemens, Theory of Thermal Conductivity of Solids, in: “Thermal Conductivity” vol. 1, R.P. Tye, ed., Academic Press, London (1969).

    Google Scholar 

  3. P.G. Klemens, Thermal Conductivity of Solids at Low Temperatures, in: “Handbuch der Physik” vol. 14, S. Fluegge, ed., Springer, Berlin (1956).

    Google Scholar 

  4. G.K. White and R.J. Tainsh, Phys. Rev. Lett. 19: 165 (1967).

    Article  Google Scholar 

  5. C. Herring, Phys. Rev. Lett. 19: 167 and 684 (1967).

    Google Scholar 

  6. P.G. Klemens, Thermal Conductivity and Lattice Vibrational Modes, in: “Solid State Physics” vol. 7, F. Seitz and D. Turnbull, eds., Academic Press, New York (1958).

    Google Scholar 

  7. A.C. Anderson, The Phonon-Dislocation Interaction, in: “Thermal Conductivity 16”, D.C. Larsen, ed., Plenum Press, New York (1983).

    Google Scholar 

  8. F.L. Madarasz and P.G. Klemens, Phys. Rev. B23: 2553 (1981).

    Article  Google Scholar 

  9. A.B. Pippard, Phil. Mag. 46: 1104 (1955).

    Google Scholar 

  10. P.G. Klemens, Lattice Thermal Resistivity due to Point Defects, in: “Thermal Conductivity 16”, D.C. Larsen, ed., Plenum Press, New York (1983).

    Google Scholar 

  11. R. Berman, “Thermal Conduction in Solids”, Clarendon Press, Oxford (1976).

    Google Scholar 

  12. J.N. Lamer and H.M. Rosenberg, Phil. Mag. 4: 467 (1959).

    Article  Google Scholar 

  13. W.R.G. Kemp, P.G. Klemens and R.J. Tainsh, Phil. Mag. 4: 845 (1959).

    Article  Google Scholar 

  14. P. Lindenfeld and W.B. Pennebaker, Phys. Rev. 127: 1881 (1962).

    Article  Google Scholar 

  15. J.E. Zimmerman, J. Phys. Chem. Solids 11: 299 (1959).

    Article  Google Scholar 

  16. J.K. Hulm, Proc. Roy. Soc. A204: 98 (1950).

    Article  Google Scholar 

  17. J. Bardeen, G. Rickayzen and T.L. Tewordt, Phys. Rev. 113: 982 (1959).

    Article  Google Scholar 

  18. C. Kittel, Phys. Rev. 75: 972 (1949).

    Article  Google Scholar 

  19. P.G. Klemens, Thermal Conductivity of Glass, in: “Non-Crystalline Solids”, V.D. Fréchette, ed., Wiley and Sons, New York (1960).

    Google Scholar 

  20. P.W. Anderson, B.I. Halperin and C.M. Varma, Phil. Mag. 25: 1 (1972).

    Article  Google Scholar 

  21. G. Neuer, R. Brandt and G. Haufler, “Thermal Conductivity and Emissivity of Solid UO2” Report SB3, Institut f. Reaktorsicherheit, Cologne (1973).

    Google Scholar 

  22. P.G. Klemens, Theory of Heat Conduction in Evacuated Metal Powders, in: “Thermal Conductivity 17”, J.G. Hust, ed., Plenum Press, New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klemens, P.G. (1984). Low Temperature Thermal Conduction in Solids. In: Clark, A.F., Reed, R.P. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9868-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9868-4_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9870-7

  • Online ISBN: 978-1-4613-9868-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics