Skip to main content

Part of the book series: Advances in Nuclear Science and Technology ((ANST,volume 20))

Abstract

The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired.

Work supported by the U.S. Department of Energy, Nuclear Energy Programs, under Contract W-31–109-ENG-38.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Cahalan, R. H. Sevy, and S. F. Su, “Accommodation of Unprotected Accidents by Inherent Safety Design Features in Metallic and Oxide-Fuelled LMFBRs,” Proc. International Topical Meeting on Fast Reactor Safety, Knoxville, Tennessee, CONF-850410, Vol. 1, p. 29 (1985).

    Google Scholar 

  2. J. F. Marchaterre, R. H. Sevy, and J. C. Cahalan, “Integral Fast Reactor Concept Inherent Safety Features,” Proc. ASME Winter Meeting, 86-WA/NE-14, Anaheim, California (December 7–12, 1986).

    Google Scholar 

  3. L. C. Walters, B. R. Scidel, and J. H. Kittel, “Performance of Metallic Fuels and Blankets in Liquid Metal Fast Breeder Reactors,” Nucl. Tech., 65, 179 (1984).

    Google Scholar 

  4. B. R. Scidel, D. L. Porter, L. C. Walters, and G. L. Hofman, “Experience with EBR-II Driver Fuel,” Proc. International Conf. on Reliable Fuels for Liquid Metal Reactors, Tucson, Arizona (September 7–11, 1986).

    Google Scholar 

  5. B. R. Scidel, G. L. Batte, C. E. Lahm, R. M. Fryer, J. F. Koenig, and G. L. Hofman, “Off-Normal Performance of EBR-II Driver Fuel,” Proc. International Conf. on Reliable Fuels for Liquid Metal Reactors, Tucson, Arizona (September 7–11, 1986).

    Google Scholar 

  6. L. Burris, M. Steindler, and W. Miller, “A Proposed Pyrometallurgical Process for Rapid Recycle of Discharged Fuel Materials from the Integral Fast Reactor,” Proc. ANS International Topical Meeting on Fuel Reprocessing and Waste Management, Jackson, Wyoming (August 26–29, 1984).

    Google Scholar 

  7. L. Burris, “Rekindled Interest in Pyrometallurgical Processing,” Chemical Engineering Progress (February 1986).

    Google Scholar 

  8. L. Burris, R. K. Steunenberg, and W. E. Miller, “The Application of Electrorefining for Recovery and Purification of Fuel Discharged from the Integral Fast Reactor,” Proc. Annual AIChE Meeting, Miami, Florida (November 2–7, 1986).

    Google Scholar 

  9. J. F. Marehaterre, J. E. Cahalan, R. H. Sevy, and A. E. Wright, “Safety Characteristics of the Integral Fast Reactor Concept,” Proc. ASME Winter Meeting, 85-WA/NE-14, Miami Beach, Florida (November 1985).

    Google Scholar 

  10. G. H. Golden, H. P. Planchon, Jr., J. I. Sackett, and R. M. Singer, “Evolution of Thermal-Hydraulics Testing in EBR-II,” Nuclear Engineering and Design, Vol. 101, No. 1, pp. 3–12 (1987).

    Article  Google Scholar 

  11. N. C. Messick, P. R. Betten, W. F. Booty, L. J. Christensen, R. M. Fryer, D. Mohr, H. P. Planchon and W. H. Radtke, “Modification of EBR-II Plant to Conduct Loss-of-Flow-Without-Seram Tests,” Nuclear Engineering and Design, Vol. 101, No. 1, pp. 13–23 (1987).

    Article  Google Scholar 

  12. C. E. Lahm, J. F. Koenig, P. R. Betten, J. H. Böttcher, W. K. Lehto, and B. R. Scidel, “EBR-II Driver Fuel Qualification for Loss-of-Flow and Loss of Heat-Sink Tests Without Scram,” Nuclear Engineering and Design, Vol. 101, No. 1, pp. 25–34 (1987).

    Article  Google Scholar 

  13. W. K. Lehto, R. M. Fryer, E. M. Dean, J. F. Koenig, L. K. Chang, D. Mohr, and E. E. Feldman, “Safety Analysis for the Loss-of-Flow and Loss-of-Heat Sink without Scram Tests in EBR-II,” Nuclear Engineering and Design, Vol. 101, No. 1, pp. 35–44 (1987).

    Article  Google Scholar 

  14. D. Mohr, L. K. Chang, E. E. Feldman, P. R. Betten, and H. P. Planchon, “Loss-of-Primary-Flow-Without-Scram Tests: Pretest Predictions and Preliminary Results,” Nuclear Engineering and Design, Vol. 101, No. 1, pp. 45–56 (1987).

    Article  Google Scholar 

  15. E. E. Feldman, D. Mohr, L. K. Chang, H. P. Planchon, E. M. Dean, and P. R. Betten, “EBR-II Unprotected Loss-of-Heat-Sink Predictions and Preliminary Test Results,” Nuclear Engineering and Design, Vol. 101, pp. 57–66 (1987).

    Article  Google Scholar 

  16. L. K. Chang, J.F. Koenig, and D. L. Porter, “Whole-core Damage Analysis of EBR-II Driver Fuel Elements Following SHRT Program,” Nuclear Engineering Design, Vol. 101, No. 1, pp. 67–74 (1987).

    Article  Google Scholar 

  17. H. P. Planchon, J. I. Sackett, G. H. Golden, and R. H. Sevy, “Implications of the EBR-II Inherent Safety Demonstration Tests,” Nuclear Engineering and Design, Vol. KM, No. 1, p. 75–90 (1987).

    Article  Google Scholar 

  18. “Nuclear Energy Cost Data Base: A Reference Data Base for Nuclear and Coal-fired Powerplant Power Generation Cost Analysis,” DOE/NE-0044/3 (June 1985).

    Google Scholar 

  19. F. E. Tippets, S. M. Davies, L. N. Salerno, and C. R. Snyder, “PRISM: A Passively Safe, Economic, and Testable Advanced Power Reactor,” Proc. American Power Conference, 48, 694 (1986).

    Google Scholar 

  20. J. E. Brunings, E. Guenther, and R. R. Hren, “Sodium Advanced Fast Reactor (SAFR) for Safe Economic Power,” Proc. American Power Conference, 48, 683 (1986).

    Google Scholar 

  21. Ting-Shu Wu and R. W. Scidensticker, “Sensitivity Studies of a Scismically Isolated System to Low Frequency Amplification,” Proc. ASME Meeting, San Diego, California (June 1987).

    Google Scholar 

  22. R. W. Scidensticker and Ting-Shu Wu, “Licensing Considerations for Application of Scismic Isolation Systems in Nuclear Facilities,” Proc. 9th International Conference on Structural Mechanics in Reactor Technology, Lausanne, Switzerland (August 17–21, 1987).

    Google Scholar 

  23. Ting-Shu Wu, B. J. Hsieh, and R. W. Scidensticker, “Comparative Studies of Isolation Systems Applied to a Compact LMR Reactor Module,” Proc. 9th International Conference on Structural Mechanics in Reactor Technology, Lausanne, Switzerland (August 17–21, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Till, C.E., Chang, Y.I. (1988). The Integral Fast Reactor. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9925-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9925-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9927-8

  • Online ISBN: 978-1-4613-9925-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics