Skip to main content

Metabolism of Hydrogen Selenide and Methylated Selenides

  • Chapter
Advances in Nutritional Research

Part of the book series: Advances in Nutritional Research ((ANUR,volume 2))

Abstract

Inorganic forms of selenium are readily metabolized to a variety of or-ganoselenium compounds in microorganisms, plants, and animals. The metabolism of selenium may either enhance or reduce the biological activity of this element. Nutritionally active inorganic selenium compounds, such as sodium selenite or sodium selenate, can be converted to physiologically active forms of selenium such as the selenoenzyme, GSH (glutathione) peroxidase. Toxic levels of selenite or selenate can be detoxified by the formation of methylated selenides that are readily excreted and usually less toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agenäs, L.-B., 1973, Selenides and their derivatives, in Organic Selenium Compounds. Their Chemistry and Biology (D. L. Klayman and W. H. H. Günther, eds.), pp. 173–222, Wiley-Interscience, New York.

    Google Scholar 

  • Asher, C. J., Evans, C. S., and Johnson, C. M., 1967, Collection and partial characterization of volatile selenium compounds from Medicago Sativa L., Aust. J. Biol. Sci. 20:737.

    CAS  Google Scholar 

  • Bagnall, K. W., 1973, Selenium, tellurium and polonium, in Comprehensive Inorganic Chemistry (J. C. Bailar, Jr., H. F. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, eds.), vol. 2, pp. 935–1008, Pergamon, Oxford.

    Google Scholar 

  • Benes, J., and Prochazkova, V., 1967, Separation of some selenides, sulfides, and ethers by gas chromatography, J. Chromatogr. 29:239.

    Article  CAS  Google Scholar 

  • Bremer, J., and Greenberg, D. M., 1961, Enzymic methylation of foreign sulfhydryl compounds, Biochim. Biophys. Acta, 46:217.

    Article  CAS  Google Scholar 

  • Bremer, J., and Natori, Y., 1960, Behavior of some selenium compounds in transmethylation, Biochim. Biophys. Acta, 44:367.

    Article  CAS  Google Scholar 

  • Brooker, L. G. S., Ford, J. A., Jr., and Van Lare, E. J., 1973, Heterocyclic selenium compounds. Selenium-containing dyes, in Organic Selenium Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Günther, eds.), pp. 507–530, Wiley-Interscience, New York.

    Google Scholar 

  • Burk, R. F., Foster, K. A., Greenfield, P. M., and Kiker, K. W., 1974, Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein, Proc. Soc. Exp. Biol. Med. 145:782.

    CAS  Google Scholar 

  • Byard, J. L., 1969, Trimethyl selenide. A urinary metabolite of selenite, Arch. Biochem. Biophys. 130:556.

    Article  CAS  Google Scholar 

  • Caygill, C. P. J., Lucy, J. A., and Diplock, A. T., 1971, The effect of vitamin E on the intracellular distribution of the different oxidation states of selenium in rat liver, Biochem. J., 125:407.

    CAS  Google Scholar 

  • Challenger, F., 1935, The biological methylation of compounds of arsenic and selenium, Chem. Ind. 54:657.

    Article  Google Scholar 

  • Challenger, F., 1951, Biological methylation, Adv. Enzymol. Biochem. 12:429.

    CAS  Google Scholar 

  • Chau, Y. K., Wong, P. T. S., and Goulden, P. D., 1975, Gas-chromatography-atomic absorption method for the determination of dimethyl selenide and dimethyl diselenide, Anal. Chem. 47:2279.

    Article  CAS  Google Scholar 

  • Cone, J. E., Del Rio, R. F., Davis, J. N., and Stadtman, T. C., 1976, Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium component, Proc. Natl. Acad. Sci. USA, 8:2659.

    Article  Google Scholar 

  • Cooper, W. C., and Glover, J. R., 1974, The toxicology of selenium and its compounds, in Selenium (R. Zingaro and W. C. Cooper, eds.), pp. 654–674, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Cummins, L. M., and Martin, J. L., 1967, Are selenocystine and selenomethionine synthesized in vivo from sodium selenite in mammals? Biochemistry 6:3162.

    Article  CAS  Google Scholar 

  • Dilworth, G. L., and Bandurski, R. S., 1977, Activation of selenate by adenosine 5’-triphosphate sulfurylase from Saccharomyces cerevisiae, Biochem. J. 163:521.

    CAS  Google Scholar 

  • Diplock, A. T., 1974, A possible role for trace amounts of selenium and vitamin E in the electrontransfer system of rat liver microsomes, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 147–160, University Park Press, Baltimore.

    Google Scholar 

  • Diplock, A. T., 1976, Metabolic aspects of selenium action and toxicity, Crit. Rev. Toxicol. 4:271.

    CAS  Google Scholar 

  • Diplock, A. T., Baum, H., and Lucy, J. A., 1971, The effect of vitamin E on the oxidation state of selenium in rat liver, Biochem. J. 123:721.

    CAS  Google Scholar 

  • Diplock, A. T., Caygill, C. P. J., Jeffrey, E. H., and Thomas, C., 1973, The nature of the acid-volatile selenium in the liver of the male rat, Biochem. J. 134:283.

    CAS  Google Scholar 

  • Evans, G. S., and Johnson, C. M., 1966, The separation of some alkylselenium compounds by gas chromatography, J. Chromatogr. 21:202.

    Article  CAS  Google Scholar 

  • Everett, G. A., and Holley, R. W., 1961, Effect of minerals on amino acid incorporation by a rat-liver preparation, Biochim. Biophys. Acta 46:390.

    Article  CAS  Google Scholar 

  • Fleming, R. W., and Alexander, M., 1972, Dimethylselenide and dimethyltelluride formation by a strain of Penicillium, Appl. Microbiol. 24:424.

    CAS  Google Scholar 

  • Flohe, L., and Günzler, W. A., 1974, Glutathione peroxidase, in Glutathione (L. Flohe, H. Benohr, H. Sies, H. D. Waller, and A. Wendel, eds.), pp. 132–145, Academic Press, New York.

    Google Scholar 

  • Flohe, L., Günzler, W. A., and Ladenstein, R., 1976, Glutathione peroxidase, in Glutathione: Metabolism and Function (I. M. Arias and W. B. Jacoby, eds.), pp. 115–138, Raven Press, New York.

    Google Scholar 

  • Ganther, H. E., 1966, Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts, Biochemistry 5:1089.

    Article  CAS  Google Scholar 

  • Ganther, H. E., 1968, Selenotrisulfides. Formation by the reaction of thiols with selenious acid, Biochemistry 7:2898.

    Article  CAS  Google Scholar 

  • Ganther, H. E., 1971, Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase, Biochemistry 10:4089.

    Article  CAS  Google Scholar 

  • Ganther, H. E., 1974, Biochemistry of selenium, in Selenium (R. A. Zingaro and W. C. Cooper, eds.), pp. 546–614, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Ganther, H. E. 1975, Selenoproteins, Chemica Scr. 8A:79.

    CAS  Google Scholar 

  • Ganther, H. E., and Baumann, C. A., 1962, Selenium metabolism. I. Effects of diet, arsenic, and cadmium, J. Nutr. 77:210.

    CAS  Google Scholar 

  • Ganther, H. E., and Corcoran, C., 1969, Selenotrisulfides. II. Cross-linking of reduced pancreatic ribonuclease with selenium, Biochemistry 8:2557.

    Article  CAS  Google Scholar 

  • Ganther, H. E., and Hsieh, H. S., 1974, Mechanisms for the conversion of selenite to selenides in mammalian tissues, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 339–353, University Park Press, Baltimore.

    Google Scholar 

  • Ganther, H. E., Levander, O. A., and Baumann, C. A., 1966, Dietary control of selenium volatilization in the rat, J. Nutr. 88:55.

    CAS  Google Scholar 

  • Gasiewicz, T. A., and Smith, J. C., 1976, Interactions of cadmium and selenium in rat plasma in vivo and in vitro, Biochim. Biophys. Acta 428:113.

    Article  CAS  Google Scholar 

  • Gasiewicz, T. A., and Smith, J. C., 1977, Similar properties of cadmium and selenium complex formed in rat plasma in vivo and in vitro, Fed. Proc. 36:1152.

    Google Scholar 

  • Godwin, D. O., and Fuss, C. N., 1972, The entry of selenium into rabbit protein following the administration of Na2 75SeO3, Aust. J. Biol. Sci. 25:865.

    CAS  Google Scholar 

  • Hiilen, L. W., and Werner, R. L., 1973, Correlation of retention index data for dimethyl polysulfides, poly selenides, and related thiaselena-alkanes, J. Chromatogr. 79:318.

    Article  Google Scholar 

  • Hoffman, J. L., 1977, Selenite toxicity, depletion of liver S-adenosylmethionine, and inactivation of methionine adenosyltransferase, Arch. Biochem. Biophys. 179:136.

    Article  CAS  Google Scholar 

  • Hsieh, H. S., 1974, Mechanisms for the biosynthesis of dimethyl selenide from sodium selenite in the rat, Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Hsieh, H. S., and Ganther, H. E., 1975, Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry 14:1632.

    Article  CAS  Google Scholar 

  • Hsieh, H. E., and Ganther, H. E., 1976, Effects of stock or purified diet on rat liver enzymes involved in the synthesis of dimethyl selenide, J. Nutr. 106:1577.

    CAS  Google Scholar 

  • Hsieh, H. S., and Ganther, H. E., 1977, Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free system, Biochim. Biophys. Acta 497:205.

    Article  CAS  Google Scholar 

  • Jenkins, K. J., and Hidiroglou, M., 1972, Comparative metabolism of 75Se-selenite, 75Se-selenate, and 75Se-selenomethionine in bovine erythrocytes, Can. J. Physiol. Pharmacol. 50:927.

    Article  CAS  Google Scholar 

  • Kalouskova, J., Parizek, J., Pavlik, L., and Benes, J., 1977, Studies on the mechanism of sex-linked difference in the toxicity and retention of methylated selenium compounds, in Trace Element Metabolism in Man and Animals, Vol. 3 (M. Kirchgessner, ed.), pp. 611–613, Arbeitskreis für Tierernäbrungsforschung Weihenstephan.

    Google Scholar 

  • Lee, M., Dong, A., and Yano, J., 1969, Metabolism of 75Se-selenite by human whole blood in vitro, Can. J. Biochem. 47:791.

    Article  CAS  Google Scholar 

  • Levander, O. A., 1976, Selected aspects of the comparative metabolism and biochemistry of selenium and sulfur, in Trace Elements in Human Health and Disease, Vol. 2 (A. S. Prasad, ed.), pp. 135–163, Academic Press, New York.

    Google Scholar 

  • Levander, O. A., and Argrett, L. C., 1969, Effect of arsenic, mercury, thallium, and lead on selenium metabolism in rats. Toxicol. Appl. Pharmacol. 14:308.

    Article  CAS  Google Scholar 

  • Martin, J. L., and Hurlbut, J. A., 1976, Tissue selenium levels and growth responses of mice fed selenomethionine, Se-methylselenocysteine, or sodium selenite, Phosphorous Sulfur 1: 295.

    Article  CAS  Google Scholar 

  • McConnell, K. P., and Portman, O. W., 1952a, Excretion of dimethyl selenide by the rat. J. Biol. Chem. 195:277.

    CAS  Google Scholar 

  • McConnell, K. P., and Portman, O. W., 1952b, Toxicity of dimethyl selenide in the rat and mouse, Proc. Soc. Exp. Biol. Med. 79:230.

    CAS  Google Scholar 

  • McConnell, K. P., and Roth, D. M., 1966, Respiratory excretion of selenium, Proc. Soc. Exp. Biol. Med. 123:919.

    CAS  Google Scholar 

  • Millar, K. R., and Allsop, T. F., 1972, Distribution of 75Se and 35S in intracellular fractions of rat liver and rat kidney, N. Z. J. Agrie. Res. 15:538.

    Article  CAS  Google Scholar 

  • Millar, K. R., Gardiner, M. A., and Sheppard, A. D., 1973, A comparison of the metabolism of intravenously injected sodium selenite, sodium selenate, and selenomethionine in rats, N. Z. J. Agrie. Res. 16:115.

    Article  CAS  Google Scholar 

  • Nakamuro, K., Sayato, Y., and Ose, Y., 1977, Studies on selenium-related compounds. VI. Biosynthesis of dimethyl selenide in rat liver after oral administration of sodium selenate, Toxicol. Appl. Pharmacol. 39:521.

    Article  CAS  Google Scholar 

  • Obermeyer, B. D., Palmer, I. S., Olson, O. E., and Halverson, A. W., 1971, Toxicity of trimethylselenonium chloride in the rat with and without arsenite, Toxicol. Appl. Pharmacol. 20:135.

    Article  CAS  Google Scholar 

  • Olson, O. E., and Palmer, I. S., 1976, Selenoamino acids in tissues of rats administered inorganic selenium, Metabolism 25:299.

    Article  CAS  Google Scholar 

  • Olson, O. E., Novacek, E. J., Whitehead, E. I., and Palmer, I. S., 1970, Investigations on selenium in wheat, Phytochemistry 9:1181.

    Article  CAS  Google Scholar 

  • Palmer, I. S., Fischer, D. D., Halverson, A. W., and Olson, O. E., 1969, Identification of a major selenium excretory product in rat urine, Biochim. Biophys. Acta 177:336.

    Article  CAS  Google Scholar 

  • Parizek, J., and Benes, J., 1973, Methylated radioselenium compounds: Their synthesis, metabolism, and practical use, in Radiopharmaceuticals and Labelled Compounds, Vol. 2, pp. 141–144, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Parizek, J., and Ostadalova, I., 1967, The protective effect of small amounts of selenite in sublimate intoxication, Experientia 23:142.

    Article  CAS  Google Scholar 

  • Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A., and Benes, J., 1971, The detoxifying effects of selenium. Interrelations between compounds of selenium and certain metals, in Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer, eds.), pp. 85–122, Marcel Dekker, New York.

    Google Scholar 

  • Parizek, J., Kalouskova, J., Babicky, A., Benes, J., and Pavlik, L., 1974, Interaction of selenium with mercury, cadmium, and other toxic metals, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 119–131, University Park Press, Baltimore.

    Google Scholar 

  • Parizek, J., Kalouskova, J., Korunova, V., Benes, J., and Pavlik, L., 1976, The protective effect of pretreatment with selenite on the toxicity of dimethyl selenide, Physiol. Bohemoslov. 25:573.

    CAS  Google Scholar 

  • Peterson, P. J., and Butler, G. W., 1962, The uptake and assimilation of selenite by higher plants, Aust. J. Biol. Sci. 15:126.

    CAS  Google Scholar 

  • Rhead, W. J., and Schrauzer, G. N., 1974, The selenium catalyzed reduction of methylene blue by thiols, Bioinorg. Chemistry 3:225.

    Article  CAS  Google Scholar 

  • Rhead, W. J., Evans, G. A., and Schrauzer, G. N., 1974, Selenium in human plasma: Levels in blood proteins and behavior upon dialysis, acidification, and reduction, Bioinorg. Chem. 3:217.

    Article  CAS  Google Scholar 

  • Sandholm, M., 1973, The metabolism of selenite in cow blood in vitro, Acta Pharmacol. Toxicol. 33:6.

    Article  CAS  Google Scholar 

  • Sandholm, M., 1975, Function of erythrocytes in attaching selenite-Se onto specific plasma proteins, Acta Pharmacol. Toxicol. 36:321.

    Article  CAS  Google Scholar 

  • Shaw, W. H., and Anderson, J. W., 1974, Comparative enzymology of the adenosine triphosphate sulfurylases from leaf tissue of selenium-accumulator and non-accumulator plants, Biochem. J. 139:37.

    CAS  Google Scholar 

  • Srivastava, S. K., and Beutler, E., 1969, The transport of oxidized glutathione from human erythrocytes, J. Biol. Chem. 244:9.

    CAS  Google Scholar 

  • Sternberg, J., Brodeur, J., Imbach, A., and Mercier, A., 1968, Metabolic studies with seleniated compounds. III. Lung excretion of selenium-75 and liver function, Int. J. Appl. Radiat. Isot. 19:669.

    Article  CAS  Google Scholar 

  • Tappel, A. L., Forstrom, J. W., Zakowski, J. J., Lyons, D. E., and Hawkes, W. C., 1978, The catalytic site of rat liver glutathione peroxidase as selenocysteine and selenocysteine in rat liver, Fed. Proc. (Abstr.) 37:706.

    Google Scholar 

  • Tsay, D.-T., Halverson, A. W., and Palmer, I. S., 1970, Inactivity of dietary trimethylselenonium chloride against the necrogenic syndrome of the rat, Nutr. Rep. Int. 2:203.

    CAS  Google Scholar 

  • Tsen, C. C., and Tappel, A. L., 1958, Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite, J. Biol. Chem. 233:1230.

    CAS  Google Scholar 

  • Van Loon, J., and Radziuk, B., 1976, A quartz T-tube furnace-AAS system for metal speciation studies, Can. J. Spectrosc. 21:46.

    Google Scholar 

  • Vernie, L. N., Bont, W. S., and Emmelot, P., 1974, Inhibition of in vitro amino acid incorporation by sodium selenite, Biochemistry 13:337.

    Article  CAS  Google Scholar 

  • Vernie, L. N., Bont, W. S., Ginjaar, H. B., and Emmelot, P., 1975, Elongation factor 2 as the target of the reaction product between sodium selenite and glutathione (GSSeSG) in the inhibiting of amino acid incorporation in vitro, Biochim. Biophys. Acta 414:283.

    Article  CAS  Google Scholar 

  • Vlasakova, V., Benes, J., and Parizek, J., 1972, Application of gas chromatography for the analysis of trace amounts of volatile 75Se metabolites in expired air, Radiochem. Radioanal. Lett. 10:251.

    CAS  Google Scholar 

  • Walter, R., Schlesinger, D. H., and Schwartz, I. L., 1969, Chromatographic separation of isologous sulfur- and selenium-containing amino acids: Reductive scission of the selenium-selenium bond by mercaptans and selenols, Anal. Biochem. 27:231.

    Article  CAS  Google Scholar 

  • Wilson, L. G., and Bandurski, R. S., 1958, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Ganther, H.E. (1979). Metabolism of Hydrogen Selenide and Methylated Selenides. In: Draper, H.H. (eds) Advances in Nutritional Research. Advances in Nutritional Research, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9931-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9931-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9933-9

  • Online ISBN: 978-1-4613-9931-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics