Skip to main content

Wavelets and Framelets Within the Framework of Nonhomogeneous Wavelet Systems

  • Conference paper
  • First Online:
Approximation Theory XIII: San Antonio 2010

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 13))

Abstract

In this paper, we shall discuss recent developments in the basic theory of wavelets and framelets within the framework of nonhomogeneous wavelet systems in a natural and simple way. We shall see that nonhomogeneous wavelet systems naturally link many aspects of wavelet analysis together. There are two fundamental issues of the basic theory of wavelets and framelets: frequency-based nonhomogeneous dual framelets in the distribution space and stability of nonhomogeneous wavelet systems in a general function space. For example, without any a priori condition, we show that every dual framelet filter bank derived via the oblique extension principle (OEP) always has an underlying frequency-based nonhomogeneous dual framelet in the distribution space. We show that directional representations to capture edge singularities in high dimensions can be easily achieved by constructing nonstationary nonhomogeneous tight framelets in \({L}_{2}(\mathbb{R})\) with the dilation matrix \(2{I}_{mathbbD}\). Moreover, such directional tight framelets are derived from tight framelet filter banks derived via OEP. We also address the algorithmic aspects of wavelets and framelets such as discrete wavelet/framelet transform and its basic properties in the discrete sequence setting. We provide the reader in this paper a more or less complete picture so far on wavelets and framelets with the framework of nonhomogeneous wavelet systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), 389–427.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Borup, R. Gribonval and M. Nielsen, Bi-framelet systems with few vanishing moments characterize Besov spaces. Appl. Comput. Harmon. Anal 17 (2004), 3–28.

    Google Scholar 

  3. M. Bownik, A characterization of affine dual frames in \({L}^{2}({\mathbb{R}}^{n})\), Appl. Comput. Harmon. Anal. 8 (2000), 203-221.

    Google Scholar 

  4. E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with C 2 singularities, Comm. Pure Appl. Math. 56 (2004), 219–266.

    Google Scholar 

  5. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision. Mem. Amer. Math. Soc. 93 (1991), no. 453.

    Google Scholar 

  6. C. K. Chui, An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992.

    MATH  Google Scholar 

  7. C. K. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal. 13 (2002), 224–262.

    Google Scholar 

  8. C. K. Chui, W. He, and J. Stöckler, Nonstationary tight wavelet frames. II. Unbounded intervals. Appl. Comput. Harmon. Anal. 18 (2005), 25–66.

    Google Scholar 

  9. C. K. Chui and X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9 (2000), 243–264.

    Google Scholar 

  10. A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68 (1992), 313–335.

    Google Scholar 

  11. A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), 527–591.

    Google Scholar 

  12. A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992), 485–560.

    Google Scholar 

  13. A. Cohen, I. Daubechies, and G. Plonka, Regularity of refinable function vectors. J. Fourier Anal. Appl. 3 (1997), 295–324.

    Google Scholar 

  14. A. Cohen, K. Gröchenig, and L. F. Villemoes, Regularity of multivariate refinable functions. Constr. Approx. 15 (1999), 241–255.

    Google Scholar 

  15. W. Dahmen, Stability of multiscale transformations, J. Fourier Anal. Appl. 2 (1996), 341–361.

    Google Scholar 

  16. W. Dahmen, Multiscale and wavelet methods for operator equations, in Multiscale problems and methods in numerical simulations, 31–96, Lecture Notes in Math. 1825, Springer, (2003).

    Google Scholar 

  17. X. Dai, D. R. Larson, and D. M. Speegle, Wavelet sets in \({\mathbb{R}}^{n}\), J. Fourier Anal. Appl. 3 (1997), 451–456.

    Google Scholar 

  18. I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988), 909–996.

    Google Scholar 

  19. I. Daubechies, Ten lectures on wavelets, SIAM, CBMS Series, 1992.

    Book  MATH  Google Scholar 

  20. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283.

    Google Scholar 

  21. I. Daubechies and B. Han, The canonical dual frame of a wavelet frame, Appl. Comput. Harmon. Anal., 12, (2002), 269–285.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Daubechies and B. Han, Pairs of dual wavelet frames from any two refinable functions, Constr. Approx., 20 (2004), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Daubechies, B.  Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003), 1–46.

    Google Scholar 

  24. C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer-Verlag, (1993).

    Google Scholar 

  25. R. A. DeVore, B. Jawerth, and P. Popov, Compression of wavelet decompositions. Amer. J. Math. 114 (1992), 737–785.

    Google Scholar 

  26. N. Dyn and D. Levin, Subdivision schemes in geometric modelling. Acta Numer. 11 (2002), 73–144.

    Google Scholar 

  27. M. Ehler, On multivariate compactly supported bi-frames, J. Fourier Anal. Appl. 13 (2007), 511–532.

    Google Scholar 

  28. M. Ehler and B. Han, Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Computat. Harmon. Anal., 25 (2008), 407–414.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Frazier, G. Garrigós, K. Wang, and G. Weiss, A characterization of functions that generate wavelet and related expansion, J. Fourier Anal. Appl. 3 (1997), 883–906.

    Google Scholar 

  30. B. Han, Wavelets, M.Sc. thesis at Institute of Mathematics, the Chinese Academy of Sciences, June 1994.

    Google Scholar 

  31. B. Han, On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 4 (1997), 380–413.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support, SIAM Math. Anal. 31 (2000), 274–304.

    Google Scholar 

  33. B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory, 110, (2001), 18–53.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Han, Projectable multivariate refinable functions and biorthogonal wavelets, Appl. Comput. Harmon. Anal., 13, (2002), 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl., 24 (2003), 693–714.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory, 124 (2003), 44–88.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Han, Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math., 155 (2003), 43–67.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Han, Construction of wavelets and framelets by the projection method, Intern. J. Appl. Math. Appl., 1 (2008), 1–40.

    MATH  Google Scholar 

  39. B. Han, Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 40 (2008), 70–102.

    Google Scholar 

  40. B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform, Appl. Comput. Harmon. Anal. 26 (2009), 14–42.

    Google Scholar 

  41. B. Han, Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets, J. Fourier Anal. Appl. 15 (2009), 684–705.

    Google Scholar 

  42. B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Han, Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space, Appl. Comput. Harmon. Anal. 29 (2010), 330–353.

    Google Scholar 

  44. B. Han, Nonhomogeneous wavelet systems in high dimensions, arXiv:1002.2421, (2010).

    Google Scholar 

  45. B. Han, Famelets and Wavelets: Algorithms and Basic Theory, book manuscript in preparation.

    Google Scholar 

  46. B. Han and R. Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1999.

    Google Scholar 

  47. B. Han and Q. Mo, Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. Comput. Harmon. Anal., 18 (2005), 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Han and Z. Shen, Wavelets from the Loop scheme, J. Fourier Anal. Appl., 11 (2005), 615–637.

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Han and Z. Shen, Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames, Israel J. Math. 172 (2009), 371–398.

    Article  MathSciNet  MATH  Google Scholar 

  50. B. Han and Z. Shen, Compactly supported symmetric C ∞ wavelets with spectral approximation order, SIAM J. Math. Anal., 40 (2008), 905–938.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx., 29 (2009), 369–406.

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Han and X. S. Zhuang, Analysis and construction of multivariate interpoalting refinable function vectors, Acta Appl. Math., 107 (2009), 143–171.

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Han and X. S. Zhuang, Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets, SIAM J. Math. Anal. 42 (2010), 2297–2317.

    Google Scholar 

  54. D. P. Hardin, B. Kessler, Bruce, and P. R. Massopust, Multiresolution analyses based on fractal functions. J. Approx. Theory 71 (1992), 104–120.

    Google Scholar 

  55. K. Jetter, D. X. Zhou, Order of linear approximation from shift-invariant spaces, Constr. Approx. 11 (1995), 423–438.

    Google Scholar 

  56. R. Q. Jia, Approximation properties of multivariate wavelets. Math. Comp. 67 (1998), 647–665.

    Google Scholar 

  57. R. Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999), 4089–4112.

    Google Scholar 

  58. R. Q. Jia and Q. T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.

    Google Scholar 

  59. R. Q. Jia, S. D. Riemenschneider, and D. X. Zhou, Smoothness of multiple refinable functions and multiple wavelets. SIAM J. Matrix Anal. Appl. 21 (1999), 1–28.

    Google Scholar 

  60. R. Q. Jia, J. Z. Wang, and D. X. Zhou, Compactly supported wavelet bases for Sobolev spaces, Appl. Comput. Harmon. Anal. 15 (2003), 224–241.

    Google Scholar 

  61. Q. T. Jiang, On the regularity of matrix refinable functions. SIAM J. Math. Anal. 29 (1998), 1157–1176.

    Google Scholar 

  62. M. J. Lai and A. Petukhov, Method of virtual components for constructing redundant filter banks and wavelet frames. Appl. Comput. Harmon. Anal. 22 (2007), 304–318.

    Google Scholar 

  63. M. J. Lai and J. Stöckler, Construction of multivariate compactly supported tight wavelet frames, Appl. Comput. Harmon. Anal. 21 (2006), 324–348.

    Google Scholar 

  64. W. Lawton, S. L. Lee, and Z. Shen, Convergence of multidimensional cascade algorithm. Numer. Math. 78 (1998), 427–438.

    Google Scholar 

  65. W. Lawton, S. L. Lee, and Z. Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal. 28 (1997), 999–1014.

    Google Scholar 

  66. J. J. Lei, R. Q. Jia and E. W. Cheney, Approximation from shift-invariant spaces by integral operators, SIAM J. Math. Anal. 28 (1997), 481-498.

    Google Scholar 

  67. S. Li, Characterization of smoothness of multivariate refinable functions and convergence of cascade algorithms of nonhomogeneous refinement equations. Adv. Comput. Math. 20 (2004), 311–331.

    Google Scholar 

  68. S. Mallat, A wavelet tour of signal processing. Third edition. Elsevier/Academic Press, Amsterdam, 2009.

    MATH  Google Scholar 

  69. Y. Meyer, Wavelets and operators. Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  70. C. A. Micchelli and T. Sauer, Regularity of multiwavelets. Adv. Comput. Math. 7 (1997), 455–545.

    Google Scholar 

  71. S. D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory, 71 (1992), 18–38.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Ron and Z. Shen, Affine systems in \({L}_{2}({\mathbb{R}}^{d})\) II. Dual systems. J. Fourier Anal. Appl. 3 (1997), 617–637.

    Google Scholar 

  73. A. Ron and Z. Shen, Affine systems in \({L}_{2}({\mathbb{R}}^{d})\): the analysis of the analysis operator. J. Funct. Anal. 148 (1997), 408–447.

    Google Scholar 

  74. Q. Y. Sun, Convergence and boundedness of cascade algorithm in Besov spaces and Triebel-Lizorkin spaces. II. Adv. Math. 30 (2001), 22–36.

    Google Scholar 

  75. D. X. Zhou, Norms concerning subdivision sequences and their applications in wavelets. Appl. Comput. Harmon. Anal. 11 (2001), 329–346.

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Han, B. (2012). Wavelets and Framelets Within the Framework of Nonhomogeneous Wavelet Systems. In: Neamtu, M., Schumaker, L. (eds) Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0772-0_9

Download citation

Publish with us

Policies and ethics