Skip to main content

Low Cost High Performance Reconfigurable Computing

  • Chapter
  • First Online:
High-Performance Computing Using FPGAs

Abstract

High Performance Reconfigurable Computing (HPRC) has emerged as an alternative way to accelerate applications using FPGAs. Although these HPRC systems have a performance comparable to standard supercomputers and at a much lower cost, HPRC systems are still not affordable for many institutions. We present a low-cost HPRC system built on standard FPGA boards with an architecture that can execute many scientific applications faster than in Graphical Processor Units and traditional supercomputers. The system is made up of 32 low-cost FPGA boards and a custom-made high-speed network interface using RocketIO interfaces. We have designed a SystemC methodology and CAD framework that allow the designer to simulate any MPI scientific application before generating the final implementation files. The software runs on the PowerPC processor embedded in the FPGA on a light ad-hoc implementation of MPI, and the hardware is automatically translated from SystemC to Verilog, and connected to the PowerPC. This makes the SMILE HPRC system fully compatible with any existing MPI application. The proof of the concept of the SMILE HPRC has been exhaustively tested with two complex and demanding applications: the Monte Carlo financial simulation and the Boolean Synthesis using Genetic Algorithms. The results show a remarkable performance, reasonable costs, small power consumption, no need of cooling systems, small physical space requirements, system scalability and software portability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.H. Tsoi, W. Luk, Axel: a heterogeneous cluster with fpgas and gpus, in FPGA ’10: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays (ACM, New York, 2010), pp. 115–124

    Google Scholar 

  2. T.A. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V.V. Kindratenko, D.A. Buell, The promise of high-performance reconfigurable computing. IEEE Comput. 41(2), 69–76 (2008)

    Article  Google Scholar 

  3. C. Inc., The supercomputing company cray xd1 supercomputer. IEEE Computer, http://www.hpc.unm.edu/~tlthomas/buildout/Cray_XD1_Datasheet.pdf. Accessed 27 Mar 2013

  4. K. Morris, Cots supercomputing (2007), http://www.fpgajournal.com/articles_2007/20070710_cots.htm/

  5. TOP500, Top500 list June (2010), http://www.top500.org/list/2010/06/. Accessed 27 Mar 2013

  6. S. Matsuoka, The tsubame cluster experience a year later, and onto petascale tsubame 2.0, in Proceedings of the 14th European PVM/MPI User’s Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface (Springer, Berlin, 2007), pp. 8–9

    Google Scholar 

  7. D.A. Buell, T.A. El-Ghazawi, K. Gaj, V.V. Kindratenko, Guest editors’ introduction; High-performance reconfigurable computing. IEEE Comput. 40(3), 23–27 (2007)

    Article  Google Scholar 

  8. M.B. Gokhale, P.S. Graham, Reconfigurable Computing Reconfigurable Computing, Accelerating Computation with Field-Programmable Gate Arrays (Springer, Dordrecht, 2005)

    Google Scholar 

  9. Renwick Ron: SGI’s Approach to Multi-paradigm Computing (2007), http://www.arsc.edu/files/arsc/news/archive/fpga/Tue-1330-Renwick.pdf. Accessed 27 Mar 2013

  10. SGI: Sgi RASC RC100 blade (2006), http://www.sgi.com/pdfs/3939.pdf. Accessed 27 Mar 2013

  11. S. Comp., Src-7: reconfigurable general purpose computing system, Tech. Rep., SRC Computers Inc (2007), http://www.srccomp.com/techpubs/docs/SRC_MAP_69226-JA.pdf. Accessed 27 Mar 2013

  12. J.M. Arnold, D.A. Buell, E.G. Davis, Splash 2, in SPAA ’92: Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures (ACM, New York, 1992), pp. 316–322

    Google Scholar 

  13. L. Moll, M. Shand, A. Heirich, Sepia, Scalable 3d compositing using pci pamette, in FCCM ’99: Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (IEEE Computer Society, Washington, DC, 1999), p. 146

    Google Scholar 

  14. R. Sass, W.V. Kritikos, A.G. Schmidt, S. Beeravolu, P. Beeraka, Reconfigurable computing cluster (rcc) project: investigating the feasibility of fpga-based petascale computing, in FCCM ’07: Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (IEEE Computer Society, Washington, DC, 2007), pp. 127–140

    Google Scholar 

  15. M. Yoshimi, Y. Nishikawa, M. Miki, T. Hiroyasu, H. Amano, O. Mencer, A performance evaluation of cube: one-dimensional 512 fpga cluster, in ARC. Lecture Notes in Computer Science, vol. 5992 (Springer, Berlin, 2010), pp. 372–381

    Google Scholar 

  16. C.L. Cathey, J.D. Bakos, D.A. Buell, A reconfigurable distributed computing fabric exploiting multilevel parallelism, in Proceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’06) (IEEE Computer Society, Washington, DC, 2006), pp. 121–130

    Google Scholar 

  17. J. Wawrzynek, M. Oskin, C. Kozyrakis, D. Chiou, D.A. Patterson, S.-L. Lu, J.C. Hoe, K. Asanovic, Tech. Rep. UCB/EECS-2006-158, EECS Department, University of California, Berkeley (November 2006), http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-20%06-158.html

  18. M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, W. Hwu, Qp: a heterogeneous multi-accelerator cluster, in Proceedings of the 10th LCI International Conference on High-performance Clustered Computing (Linux Cluster Institute, 2009)

    Google Scholar 

  19. J. Castillo, P. Huerta: sc2v, Systemc to Verilog translator (2004), http://opencores.org/project,sc2v(2004). Accessed 27 Mar 2013

  20. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering (Addison-Wesley Longman Publishing Co. Inc., Boston, 1995)

    MATH  Google Scholar 

  21. J.S. Kim, S.J. Byun, A parallel Monte Carlo simulation on cluster systems for financial derivatives pricing, in Congress on Evolutionary Computation (IEEE, Edinburgh, 2005), pp. 1040–1044

    Google Scholar 

  22. G. Morris, M. Aubury, Design space exploration of the European option benchmark using hyperstreams, in International Conference on Field Programmable Logic and Applications, FPL 2007, Amsterdam, 2007, pp. 5–10

    Google Scholar 

  23. D.B. Thomas, J.A. Bower, W. Luk, Hardware architectures for Monte-Carlo based financial simulations, in IEEE International Conference on Field Programmable Technology, FPT 2006, Bangkok, 2006, pp. 377–380

    Google Scholar 

  24. G. Zhang, P. Leong, C. Ho, K. Tsoi, C. Cheung, D.-U. Lee, R. Cheung, W. Luk, Reconfigurable acceleration for Monte Carlo based financial simulation, in Proceedings of IEEE International Conference on Field-Programmable Technology, Singapore, 2005, pp. 215–222

    Google Scholar 

  25. V. Agarwal, L.-K. Liu, D.A. Bader, Financial modeling on the cell broadband engine, in 2008 IEEE International Symposium on PDPS, Miami, FL, 2008, pp. 1–12

    Google Scholar 

  26. F. Black, M.S. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  Google Scholar 

  27. J. Koza, F. Bennett, D. Andre, M. Keane, Genetic programming iii: Darwinian invention and problem solving. Evol. Comput. 7, 451–453 (1999)

    Article  Google Scholar 

  28. F. Rothlauf, Representations for Genetic and Evolutionay Algorithms (Springer, Heidelberg, 2006)

    Google Scholar 

  29. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. deGaris, Evolving hardware with genetic learning: a first step towards building a Darwin machine, in Proceedings of the Second International Conference on from Animals to Animats, (MIT Press, Cambridge, MA, USA, 1993), pp. 417–424

    Google Scholar 

  30. J. Miller, P. Thomson, Aspects of digital evolution: Evolvability and architecture, in Proceedings of International Conference Parallel Problem Solving from Nature—PPSN V, 927–936 (Springer, 1998)

    Google Scholar 

  31. Q. Yu, C. Chen, C. Pan, Parallel genetic algorithms on programmable graphics hardware. Lect. Notes Comput. Sci. 3612, 1051–1059 (2006)

    Article  Google Scholar 

  32. R. Krohling, Y. Zhou, A. Tyrrell, Evolving fpga-based robot controllers using an evolutionary algorithm, in Proceedings of I International Conference on Artificial Immune Systems, Canterbury, 2002, pp. 41–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castillo, J., Bosque, J.L., Pedraza, C., Castillo, E., Huerta, P., Martinez, J.I. (2013). Low Cost High Performance Reconfigurable Computing. In: Vanderbauwhede, W., Benkrid, K. (eds) High-Performance Computing Using FPGAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1791-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1791-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1790-3

  • Online ISBN: 978-1-4614-1791-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics