Skip to main content

Tribology in Machine Components

  • Chapter
  • First Online:
Tribology for Scientists and Engineers

Abstract

Proper tribological practices are extremely important from the view point of reliable and maintenance free operation of machine components. Friction, wear, and lubrication are three main domains of tribology. Proper interfacing among these domains is essential to have a better performance of machine components. Bearings are most critical machine elements which imparts constrained relative motion between two machine components. Bearings either have sliding contact or rolling contact. In the present chapter different types of bearings have been discussed. The main focus of this chapter is on hydrostatic/hybrid fluid-film journal bearings. The components of the hydrostatic/hybrid bearing system that have significant impact on bearing performance have been described. The analysis of fluid-film journal bearings and their performance characteristics parameters have been discussed. The chapter also discusses some current research trends in the design of hydrostatic/hybrid journal bearings. In concluding section the chapter discusses some of the results pertaining to the current issues of research, which needs to be considered for an accurate and realistic design of hydrostatic/hybrid journal bearing system, such as the number of recesses, type of restrictor, shape of recess, influence of turbulence and flexibility, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a b :

Axial land width, mm

as :

Extent of slot width, mm

d o :

Orifice diameter, mm

c :

Radial clearance, mm

A m :

Effective area of membrane, mm2

A p :

Area of the pocket, mm2

Ae :

Area of each element (mm2)

C ij :

Fluid-film damping coefficients (i, j = x, z), N.s/m

C1 :

Clearance due to circumscribed circle on the bearing (mm)

C2 :

Clearance due to inscribed circle on the bearing (mm)

D :

Journal diameter, mm

d c :

Diameter of capillary, mm

E :

Modulus of elasticity of bearing material, MPa

e :

Journal eccentricity, mm

F :

Fluid-film reaction (∂h/∂t ≠ 0), N

F x , F z :

Fluid-film reaction components in X and Y direction (∂h/∂t ≠ 0), N

F o :

Fluid-film reaction (∂h/∂t = 0), N

K m :

Membrane stiffness, N mm−1

g :

Acceleration due to gravity, m.s−2

h :

Nominal fluid-film thickness, mm

h T :

Average fluid-film thickness, mm

h m :

Gap height for membrane restrictor, mm

h min :

Minimum fluid-film thickness, mm

Δh m :

Membrane deflection, mm

h mo :

Gap height for zero external load in case of membrane restrictor, mm

h 0 :

Fluid-film thickness in rigid bearing, mm

l c :

Length of capillary, mm

L :

Bearing length, mm

m :

Consistency index, N.m2.s−n

M c , M j :

Critical mass and Mass of journal, kg

n :

Power law index

n x n y :

Direction cosines in α and β directions respectively

OL :

Lobe center

p :

Pressure, N.mm−2

p c :

Pressure at recess/pocket/hole, N.mm−2

p s :

Supply pressure, N.mm−2

Q :

Lubricant flow, mm3.s−1

Q R :

Flow through restrictor, mm3 s−1

r c :

Radius of capillary, mm

r 1, r 2 :

Membrane radii, mm

r m :

Mean radius of cone from apex, mm

R j , R b :

Radius of journal and bearing, mm

S ij :

Fluid-film stiffness coefficients (i, j = x, z), N.mm−1

t :

Time, sec

t h :

Thickness of bearing shell, mm

t m :

Thickness of membrane, mm

V rj , V rb :

Variance ratio of journal and bearing respectively

W o :

External load, N

x :

Circumferential coordinate

y :

Axial coordinate

X j , Z j :

Journal center coordinate

X, Y, Z :

Cartesian coordinate system

z :

Coordinate along film thickness

γ, κ :

Material coefficient, N s; spin viscosity, N s m−2

μ :

Lubricant Dynamic viscosity, N s m−2

μ r :

Reference viscosity of lubricant, N s m−2

σ :

RMS value of combined roughness, \( \sigma =\sqrt{\sigma_j^2+{\sigma}_b^2} \), μm

σ j :

RMS value of journal surface roughness, μm

σ b :

RMS value of bearing surface roughness, μm

ω I :

(g/c)1/2, rad.sec−1

ω j :

Journal rotational speed, rad.s−1

ω th :

Threshold speed, rad.s−1

ρ :

Density, kg.m−3

ψ d :

Coefficient of discharge for orifice

τ :

Shear stress, N. m−2

\( \dot{\gamma} \) :

Shear strain rate, s−1

\( {\overline{a}}_b \) :

a b /L

\( {\overline{C}}_d \) :

Deformation coefficient

\( {\overline{C}}_{ij} \) :

\( {C}_{ij}\left(\frac{c^3}{\mu_r{R}_j^4}\right) \)

\( {\overline{C}}_{S2} \) :

Restrictor design parameter

\( \overline{F},{\overline{F}}_o \) :

(F, F o /p s R 2 j )

\( {\overline{F}}_x,{\overline{F}}_z \) :

(F x , F z /p s R 2 j )

\( {\overline{F^{\hbox{'}}}}_o \) :

Cross film viscosity integrals, F0(μ r /h L )

\( {\overline{F}}_1 \) :

Cross film viscosity integrals, F 1(μ r /h 2 L )

\( \overline{h} \) :

h/c

\( {\overline{h}}_{\min },{\overline{h}}_T \) :

(h min,h T )/c

\( \overline{K} \) :

Nonlinearity factor

l m :

Nondimensional characteristic length, c/l

\( \overline{m} \) :

\( m{\left(\frac{c{p}_s}{\mu_r{R}_j}\right)}^n\left(\frac{R_j}{c{p}_s}\right) \)

\( {\overline{M}}_j \) :

\( {M}_j\ \left(\frac{c^5\ {p}_{{}_s}}{\mu_{\mathrm{r}}^2{R}_j^6}\right) \)

N :

Coupling number, \( {\left(\frac{\kappa }{2\mu +\kappa}\right)}^{1/2} \)

N i , N j :

Shape functions

\( \overline{p},{\overline{p}}_c \) :

(p,p c )/p s

\( {\overline{p}}_{\max } \) :

p max/p s

\( \overline{Q} \) :

Q (μ r /c 3 p s )

SWR :

Slot width ratio, a s /(a s )max

\( {\overline{S}}_{ij} \) :

\( {S}_{ij}\ \left(\frac{c}{p_s{R}_j^2}\right) \)

\( \overline{t} \) :

t (c 2 p s /μ r R j 2)

\( {\overline{W}}_o \) :

\( \frac{W_o}{p_s{R}_j^2} \)

\( \left({\overline{V}}_{rj},{\overline{V}}_{rb}\right) \) :

((σ j ,σ b )/σ)2

\( \left({\overline{X}}_j,{\overline{Z}}_j\right) \) :

(X j ,Z j )/c

α, β :

(x,y)/R j

β*:

Concentric design pressure ratio, (p*/p s )

ε :

e/c

γ :

\( \frac{\lambda_{0.5x}}{\lambda_{0.5y}} \), Surface pattern parameter

Λ :

\( 1/\overline{\sigma} \), Surface roughness parameter

\( \overline{\sigma} \) :

σ/c

φ x , φ y :

Pressure flow factors

φ s :

Shear flow factor

λ :

L/D, Aspect ratio

\( \overline{\mu} \) :

μ/μ r

υ :

Poisson’s ratio of bearing material

Ω :

ω J (μ r R 2 j /c 2 p s ), Speed parameter

\( {\overline{\omega}}_{th} \) :

ω th /ω I , Speed parameter

\( \overline{\tau} \) :

τ(R j /c p s ), shear stress parameter

\( \overline{\dot{\gamma}} \) :

\( \dot{\gamma}\left({\mu}_r{R}_j/c\ {p}_s\right) \), shear strain parameter

\( \left[\overline{F}\right] \) :

Fluidity matrix

\( \left\{\overline{p}\right\} \) :

Nodal pressure vector

\( \left\{\overline{Q}\right\} \) :

Nodal flow vector

\( \left\{{\overline{R}}_{X_J},{\overline{R}}_{Z_J}\right\} \) :

Nodal RHS vectors due to journal center velocities

\( \left\{{\overline{R}}_H\right\} \) :

Column vector due to hydrodynamic terms

–:

Nondimensional parameter

e :

e th element

j :

Journal

max:

Maximum value

min:

Minimum value

o :

Steady State Condition

R :

Restrictor

r :

Reference value

s :

Supply Pressure

∗:

Concentric operation

.:

First derivative w.r.t. time

..:

Second derivative w.r.t. time

References

  1. Kankar PK (2011) Fault diagnosis and prognosis of high speed rotor bearing systems. Ph.D. Dissertation, IIT Roorkee, Roorkee (India)

    Google Scholar 

  2. Nagaraju T (2003) Performance of non-recessed hybrid journal bearings with surface roughness effects. Ph.D. Dissertation, IIT Roorkee, Roorkee (India)

    Google Scholar 

  3. O’Donoghue JP, Rowe WB (1968) Hydrostatic journal bearing (exact procedure). Tribology 1(4):230–236

    Article  Google Scholar 

  4. Cheng K, Rowe WB (1995) Selection of strategy for the design of externally pressurized journal bearing. J Tribol Int 28(1):465–474

    Article  Google Scholar 

  5. Sharma Satish C (1990) Elastohydrostatic lubrication of thrust and journal bearing. Ph.D. Dissertation, University of Roorkee, Roorkee (India)

    Google Scholar 

  6. Stout KJ, Rowe WB (1974) Externally pressurized bearings- design for manufacturer part3- design of liquid externally pressurized bearing for manufacturer including tolerance procedures. J Tribol Int 7:195–212

    Google Scholar 

  7. Rowe WB, Xu SX, Chong FS, Weston W (1982) Hybrid journal bearing with particular reference to hole-entry configurations. J Tribol Int 15:339–348

    Article  Google Scholar 

  8. Rowe WB (2012) Hydrostatic, aerostatic and hybrid bearing design. Butterworth & Co Ltd, Belfast

    Google Scholar 

  9. Sinhasan R, Sharma Satish C, Jain SC (1989) Performance characteristics of an externally pressurized capillary-compensated flexible journal bearing. J Tribol Int 22:283–293

    Article  Google Scholar 

  10. Cusano C (1974) Characteristics of externally pressurized journal bearings with membrane-type variable-flow restrictors as compensating elements. Proc Instn Mech Engrs 188:52–74

    Article  Google Scholar 

  11. Phalle VM, Sharma Satish C, Jain SC (2011) Influence of wear on the performance of a 2-lobe multirecess hybrid journal bearing system compensated with membrane restrictor. J Tribol Int 44:380–395

    Article  Google Scholar 

  12. Singh A, Gupta BK (1984) Stability analysis of orthogonally displaced bearings. Wear 97:83–92

    Article  Google Scholar 

  13. Jain SC, Sharma Satish C, Basavaraja JS, Kushare P (2010) Study of two-lobe four recessed hybrid journal bearing. Ind Lubr Tribol 62(6):332–340

    Article  Google Scholar 

  14. Sharma Satish C, Phalle VM, Jain SC (2011) Influence of wear on the performance of a multirecess conical hybrid journal bearing compensated with orifice restrictor. J Tribol Int 44:1754–1764

    Article  Google Scholar 

  15. Stout KJ, Rowe WB (1974) Externally pressurized bearings- design for manufacturer part1- journal bearing selection. J Tribol Int 98–106

    Google Scholar 

  16. Phalle VM (2011) Influence of wear on the performance of Multirecess Fluid Film Journal bearing. Ph.D. Dissertation, IIT Roorkee, Roorkee (India)

    Google Scholar 

  17. Awasthi RK, Jain SC, Sharma Satish C (2006) Finite element analysis of orifice compensated multiple hole-entry worn hybrid journal bearing. Finite Elem Anal Des 42(14–15):1291–1303

    Article  Google Scholar 

  18. Lin JR (2001) Linear stability analysis of rotor- bearing system: couple stress fluid model. Comput Struct 79:801–809

    Article  Google Scholar 

  19. Sharma Satish C, Jain SC, Sinhasan R, Shalia R (1995) Six pocket and four hydrostatic/hybrid flexible journal bearings. Tribol Int 28:531–539

    Article  Google Scholar 

  20. Jain SC, Sinhasan R, Sharma Satish C (1992) Analytical study of a flexible hybrid journal bearing system using different flow control devices. Tribol Int 25:387–395

    Article  Google Scholar 

  21. Constantinescu VN, Galetuse S (1965) On the determination of friction forces in turbulent lubrication. ASLE Trans 8:367–380

    Google Scholar 

  22. Davies PB (1970) A general analysis of multirecess hydrostatic Bearing. Proc Inst Mech Eng 184(1):43

    Google Scholar 

  23. Ghosh B (1973) Load and flow characteristics of a capillary compensated Hydrostatic journal bearings. Wear 23:377–386

    Article  Google Scholar 

  24. Ghai RC, Singh DV, Sinhasan R (1976) Load capacity and flow characteristics of hydrostatically lubricated four pocket journal bearing by Finite Element Method. Int J Mach Tool Des 16:233–240

    Article  Google Scholar 

  25. Nicodemus RE, Sharma Satish C (2010) Influence of wear on the performance of multi recess hydrostatic journal bearing operating with micropolar lubricant. J Tribol 132:021703-1-11

    Google Scholar 

  26. Nicodemus RE, Sharma Satish C (2011) Orifice compensated multirecess hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micropolar lubricant. J Tribol Int 44:284–296

    Article  Google Scholar 

  27. Nicodemus RE, Sharma Satish C (2010) A study of worn hybrid journal bearing system with different recess shapes under turbulent regimes. ASME J Tribol 132:41704–41712

    Article  Google Scholar 

  28. Rowe WB, Koshal D, Stout KJ (1977) Investigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation. WEAR 43(1):55–69

    Article  Google Scholar 

  29. Bou-Said B, Nicolas D (1992) Effects of misalignment on static and dynamic charateristics of hybrid bearings. STLE Tribol Trans 35(2):325–331

    Article  Google Scholar 

  30. Sharma Satish C, Jain SC, Sinhasan R, Sah PL (2001) Static and dynamic performance characteristics of orifice compensated hydrostatic flexible journal bearing with Nonnewtonian lubricants. STLE Tribol 44(2):242–248

    Article  Google Scholar 

  31. Tayal SP (1982) Static and dynamic analysis of circular and non-circular bearings having non-Newtonian lubricant by a finite element method. Dissertation, University of Roorkee

    Google Scholar 

  32. Tayal SP, Sinhasan R, Singh DV (1981) Analysis of hydrodynamic journal bearing with non-Newtonian power law lubricants by the finite element method. Wear 71:15

    Article  Google Scholar 

  33. Nagaraju T, Sharma Satish C, Jain SC (2002) Influence of surface roughness effects on the performance of Non-recessed hybrid journal bearings. J Tribol Int 35:467–487

    Article  Google Scholar 

  34. Dufrane KF, Kannel JW, McCloskey TH (1983) Wear of steam turbine journal bearings at low operating speeds. ASME J Lubr Technol 105:313–317

    Article  Google Scholar 

  35. Kumar A, Mishra SS (1996) Steady state analysis of Non-circular worn journal bearings in non-laminar lubrication regimes. Tribol Int 29(6):493–498

    Article  Google Scholar 

  36. Ng CW, Pan CHT (1965) A linearized turbulent lubrication theory. Jr Basic Engg 87:675–688

    Article  Google Scholar 

  37. Hirs GG (1974) A systematic study of turbulent film flow. Jr Lubr Technol 96:118–126

    Article  Google Scholar 

  38. Wada S, Hashimoto H (1979) Turbulent lubrication theory using the frictional Law. Bull JSME 22:249–256

    Article  Google Scholar 

  39. Ram N, Sharma Satish C (2013) A study of misaligned hole-entry worn journal bearing operating in turbulent regime. Ind Lubr Tribol 65(2):108–118

    Article  Google Scholar 

  40. Daring DW, Dayton RD (1992) Non-Newtonian behavior of powder lubricants mixed with ethylene glycol. STLE Tribol Trans 35(1):114–120

    Article  Google Scholar 

  41. Sheja D, Prabhu BS (1993) Thermal and Non-Newtonian effect on the steady state and dynamic characteristics of hydrodynamic journal bearings—theory and experiments. STLE Tribol Trans 35(3):441

    Article  Google Scholar 

  42. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    Google Scholar 

  43. Sharma Satish C, Ram N (2011) Influence of micropolar lubricants on the performance of slot-entry hybrid journal bearing. J Tribol Int 44:1852–1863

    Article  Google Scholar 

  44. Khonsari MM (1989) On the performance of finite journal bearings lubricated with micropolar fluids. STLE Tribol Trans 32(2):15

    Article  Google Scholar 

  45. Wang XL, Zhu KQ (2006) Numerical Analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribol Int 39:227–237

    Article  Google Scholar 

Download references

Acknowledgement

The author is extremely grateful to Elsevier Publication, Taylor and Francis Publication, Emerald Group Publication, Sage Publication, and ASME publications for granting permission to use their copyright material in the present chapter. The used materials have been cited in the references. Further, I would like to acknowledge and thank my PhD scholars Mr. Arvind Kumar Rajput, Mr. G.D. Thakre, Mr. Nathi Ram, and Mr. P.B. Kushare, who provided their valuable assistance during the course of writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish C. Sharma .

Editor information

Editors and Affiliations

Exercise

Exercise

  1. 1.

    Write a brief engineering note on the purpose of lubrication in machine component? How a liquid lubricant is better than a solid lubricant?

  2. 2.

    Classify different bearing configurations? List the application of rolling contact Bearing?

  3. 3.

    Enumerate the advantages of hydrostatic journal bearing over a hydrodynamic journal bearing?

  4. 4.

    Describe in brief need of a restrictor in a hydrostatic journal bearing system? Which type of restrictor will you prefer in high variable load?

  5. 5.

    Describe the phenomena of whirl and whip in journal bearing system? How these problems could be overcome?

  6. 6.

    What are the advantages of recessed journal bearing over non-recessed journal bearing?

  7. 7.

    Derive the generalized form of Reynolds equation in nondimensional form by using suitable nondimensional parameter.

  8. 8.

    Write a brief engineering note on bearing performance characteristics parameters.

  9. 9.

    Explain Elastohydrostatic/Elastohydrodynamic Lubrication phenomenon. How do these affects the performance of a journal bearing?

  10. 10.

    What do you mean by the term Nonlinearity of lubricant? How does the nonlinearity of lubricant affect the performance of a journal bearing?

  11. 11.

    Explain the phenomenon of turbulence in the fluid-film journal bearing system. Describe different theories for turbulence applicable to journal bearing.

  12. 12.

    A capillary compensated hydrostatic journal bearing system has the following parameters-

    Discharge through capillary

    4 × 10−5 m3/s

    Length of capillary

    10 cm

    viscosity of lubricant

    2.18 × 10−3 N-s/m2

    Supply pressure

    1.4 MPa

    Recess pressure

    0.5 MPa

    Determine the radius of the capillary.

  13. 13.

    Determine the value of discharge of the lubricant through an orifice restrictor for an orifice restricted recessed hybrid journal bearing system with the following data.

    Orifice diameter

    10 mm

    Coefficient of discharge

    0.55

    Density of lubricant

    800 Kg/m3

    Supply pressure

    0.15 MPa

    Recess pressure

    0.06 MPa

  14. 14.

    Determine the load carrying capacity and shear stress for a hydrodynamic journal bearing system for the following data.

    Pressure

    1 MPa

    Aspect ratio

    0.8

    Length of the bearing

    1 m

    Clearance

    10−3 m

    Viscosity

    2.08 × 10−5 N-s/m2

    Speed of journal

    1,000 rpm

  15. 15.

    Determine the value of the coupling number and characteristics length for the lubricant with the following characteristics.

    Linear viscosity

    2.5 × 10−3 N-s/m2

    Spin viscosity

    1.2 × 10−3 N-s/m2

    Characteristics coefficients

    0.8 × 10−9 N-s

  16. 16.

    Compare the value of the turbulent coefficients for the value of Reynolds number Re = 10,000 using Constantinescu theory.

  17. 17.

    Derive the expression of critical mass of journal using the Routh’s criterion of Stability.

  18. 18.

    Determine the wear zone for a hydrostatic journal bearing system for the values of nondimensional wear depth parameter of 0.25 and 0.5.

Solutions

  1. 12.

    Given that

    Q R = 4 × 10− 5 m 3/s; l c = 0.1 m; μ = 2.18 × 10− 3 Ns/m 2; p s = 1.4 MPa; p c = 0.5 MPa

    $$ {Q}_R={K}_c\frac{\left({p}_s-{p}_c\right)}{\mu }=\frac{\pi {d_c}^4}{128{l}_c}\frac{\left({p}_s-{p}_c\right)}{\mu } $$
    $$ 4\times {10}^{-5}=\frac{\pi {d_c}^4}{128\times 0.10}\frac{\left(1.4-0.5\right)\times {10}^6}{2.18\times {10}^{-3}} $$
    $$ {d}_c=7.926\times {10}^{-4}m $$
  2. 13.

    Given that

    d0 = 10 mm; ρ = 800 kg/m3; p s = 0.15 MPa; p c = 0.06 MPa

    $$ {Q}_R=\frac{\pi {\psi}_d{d}_0^2}{\sqrt{8\rho }}{\left({p}_s-{p}_c\right)}^{\frac{1}{2}} $$
    $$ {Q}_R=\frac{\pi \times 0.55\times {\left(10\times {10}^{-3}\right)}^2}{\sqrt{8\times 800}}{\left(\left(0.15-0.06\right)\times {10}^6\right)}^{\frac{1}{2}} $$
    $$ \begin{array}{l}=6.4795\times {10}^{-4}{m}^3/ \sec \\ {}\end{array} $$
  3. 14.

    Given that

    p = 1 MPa; L/D = 0.8; L = 1 m; C = 10−3 m; N = 1,000 rpm;

    \( \mu =2.08\times {10}^{-5} Ns/{m}^2 \)

    Load carrying capacity

    Fo = p. A = p. π L.D= 1 × 106 × π × 1.25 = 3.92699 × 106 N

    Shear stress

    \( \begin{array}{l}\tau =\mu \frac{ du}{ dy}=2.08\times {10}^{-5}\times \frac{\pi \times 10000\times 1.25}{60\times {10}^{-3}}\\ {}=13.6135N/{m}^2\end{array} \)

  4. 15.

    Given that,

    \( \mu =2.5\times {10}^{-3}N-s/{m}^2 \)

    Spin velocity, κ = 1.2 × 10− 3 N − s/m 2

    \( {\gamma}_1=0.8\times {10}^{-9}N-s \)

    \( N={\left(\frac{\kappa }{2\mu +\kappa}\right)}^{\frac{1}{2}}=0.4399 \)

    \( \overset{.}{l}={\left(\frac{\gamma_1}{4\mu}\right)}^{\frac{1}{2}}=2.828\times {10}^{-4}m=0.2828\kern0.5em mm. \)

  5. 16.

    Given that,

    \( \begin{array}{l}{R}_e=10000\\ {}{G}_{\alpha }=12+0.026{\left({R}_e\right)}^{0.8265}=64.5985\\ {}{G}_{\beta }=12+0.0198{\left({R}_e\right)}^{0.741}=30.2249.\end{array} \)

  6. 18.

    Given that,

    Sinα = δ w  − 1 by Dufrane’s abrasive wear model

    \( \begin{array}{l} for,{\delta}_w=0.25\\ {} Sin\alpha =0.25-1\\ {}\alpha ={228.59}^0,{311.40}^0\end{array} \)

    \( \begin{array}{l} for,{\delta}_w=0.50\\ {} Sin\alpha =0.50-1\\ {}\alpha ={210}^0,{330}^0\end{array} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, S.C. (2013). Tribology in Machine Components. In: Menezes, P., Nosonovsky, M., Ingole, S., Kailas, S., Lovell, M. (eds) Tribology for Scientists and Engineers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1945-7_25

Download citation

Publish with us

Policies and ethics