Skip to main content

Oligomerization at the Membrane

Potassium Channel Structure and Function

  • Chapter
Book cover Protein Dimerization and Oligomerization in Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 747))

Abstract

Cell membranes present a naturally impervious barrier to aqueous solutes, such that the physiochemical environment on either side of the lipid bilayer can substantially differ. Integral membrane proteins are embedded in this heterogeneous lipid environment, wherein the juxtaposition of apolar and polar molecular surfaces defines factors such as transverse orientation, the surface area available for oligomerisation and the symmetry of resultant assemblies. This chapter focuses on potassium channels —representative molecular pores that play a critical role in electrical signalling by enabling selective transport of K+ ions across cell membranes. Oligomerization is central to K+ channel action; individual subunits are nonfunctional and conduction, selectivity and gating involve manipulation of the common subunit interface of the tetramer. Regulation of channel activity can be viewed from the perspective that the pore of K+ channels has coopted other proteins, utilizing a process of hetero-oligomerisation to absorb new functions that both enable the pore to respond to extrinsic signals and provide an electrical signature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy ED, Boeri Erba E, Robinson CV et al. Assembly reflects evolution of protein complexes. Nature 2008; 453(7199):1262–5.

    Article  PubMed  CAS  Google Scholar 

  2. Andre I, Strauss CE, Kaplan DB et al. Emergence of symmetry in homooligomeric biological assemblies. Proc Natl Acad Sci USA 2008; 105(42):16148–52.

    Article  PubMed  Google Scholar 

  3. Patel AJ, Honore E, Maingret F et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 1998; 17(15):4283–90.

    Article  PubMed  CAS  Google Scholar 

  4. Hille B. Ionic Channels of Excitable Membranes. 2nd Edition ed. Sunderland, Massachusetts: Sinauer Associates Inc.; 1992.

    Google Scholar 

  5. Doyle DA, Morais Cabral J, Pfuetzner RA et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998; 280(5360):69–77.

    Article  PubMed  CAS  Google Scholar 

  6. Kuo A, Gulbis JM, Antcliff JF et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 2003; 300(5627):1922–6.

    Article  PubMed  CAS  Google Scholar 

  7. Heginbotham L, Lu Z, Abramson T et al. Mutations in the K+ channel signature sequence. Biophys J 1994; 66(4):1061–7.

    Article  PubMed  CAS  Google Scholar 

  8. Bernèche S, Roux B. Energetics of ion conduction through the K+ channel. Nature 2001; 414(6859):73–7.

    Article  PubMed  Google Scholar 

  9. Bostick DL, Brooks CL. Selectivity in K+ channels is due to topological control of the permeant ion’s coordinated state. Proc Natl Acad Sci USA 2007; 104(22):9260–5.

    Article  Google Scholar 

  10. Zhou Y, Morais-Cabral JH, Kaufman A et al. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 2001; 414(6859):43–8.

    Article  PubMed  CAS  Google Scholar 

  11. Berneche S, Roux B. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophysical Journal 2000.

    Google Scholar 

  12. Koronakis V, Sharff A, Koronakis E et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000;405(6789):914–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chang G, Spencer RH, Lee AT et al. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 1998;282(5397):2220–6.

    Article  PubMed  CAS  Google Scholar 

  14. Armstrong CM. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 1969; 54(5):553–75.

    Article  PubMed  CAS  Google Scholar 

  15. Armstrong CM. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 1971; 58(4):413–37.

    Article  Google Scholar 

  16. Armstrong CM, Hille B. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J Gen Physiol 1972; 59(4):388–400.

    Article  PubMed  CAS  Google Scholar 

  17. Miller C. Trapping single ions inside single ion channels. Biophys J 1987; 52(1):123–6.

    Article  PubMed  CAS  Google Scholar 

  18. MacKinnon R, Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 1990; 250(4978):276–9.

    Article  PubMed  CAS  Google Scholar 

  19. Yellen G, Jurman ME, Abramson T et al. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 1991; 251(4996):939–42.

    Article  PubMed  CAS  Google Scholar 

  20. Heginbotham L, Abramson T, MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 1992; 258(5085):1152–5.

    Article  PubMed  CAS  Google Scholar 

  21. Baukrowitz T, Yellen G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 1996; 271(5249):653–6.

    Article  PubMed  CAS  Google Scholar 

  22. Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 1991; 7(4):547–56.

    Article  PubMed  CAS  Google Scholar 

  23. Lu T, Ting A, Mainland J et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat Neurosci 2001; 4(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  24. Cordero-Morales JF, Cuello LG, Zhao Y et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 2006; 13(4):311–8.

    Article  PubMed  CAS  Google Scholar 

  25. Cordero-Morales JF, Jogini V, Lewis A et al. Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 2007; 14(11):1062–9.

    Article  PubMed  CAS  Google Scholar 

  26. Blunck R, Cordero-Morales JF, Cuello LG et al. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. The Journal of General Physiology 2006; 128(5):569–81.

    Article  PubMed  CAS  Google Scholar 

  27. Ader C, Schneider R, Hornig S et al. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity. EMBO J 2009; 28(18):2825–34.

    Article  PubMed  CAS  Google Scholar 

  28. Baukrowitz T, Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 1995; 15(4):951–60.

    Article  PubMed  CAS  Google Scholar 

  29. Gao L, Mi X, Paajanen V et al. Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc Natl Acad Sci USA 2005; 102(49):17630–5.

    Article  PubMed  CAS  Google Scholar 

  30. Po S, Roberds S, Snyders DJ et al. Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current? Circ Res 1993; 72(6):1326–36.

    Article  PubMed  CAS  Google Scholar 

  31. Chanda B, Asamoah OK, Bezanilla F. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol 2004; 123(3):217–30.

    Article  PubMed  CAS  Google Scholar 

  32. Appel M, Hizlan D, Vinothkumar KR et al. Conformations of NhaA, the Na+/H+ exchanger from Escherichia coli, in the pH-activated and ion-translocating states. J Mol Biol 2009; 388(3):659–72.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang Y, Lee A, Chen J et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 2002; 417(6888):515–22.

    Article  PubMed  CAS  Google Scholar 

  34. Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 2005; 309(5736):897–903.

    Article  PubMed  CAS  Google Scholar 

  35. Shen NV, Chen X, Boyer MM et al. Deletion analysis of K+ channel assembly. Neuron 1993; 11(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  36. Li M, Jan YN, Jan LY. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 1992; 257(5074):1225–30.

    Article  PubMed  CAS  Google Scholar 

  37. Gulbis JM, Zhou M, Mann S et al. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 2000; 289(5476):123–7.

    Article  PubMed  CAS  Google Scholar 

  38. Uysal S, Vasquez V, Tereshko V et al. Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 2009; 106(16):6644–9.

    Article  PubMed  CAS  Google Scholar 

  39. Nagaya N, Papazian DM. Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J Biol Chem 1997; 272(5):3022–7.

    Google Scholar 

  40. Chan KW, Wheeler A, Csanady L. Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition. J Gen Physiol 2008; 131(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  41. Shi G, Nakahira K, Hammond S et al. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 1996; 16(4):843–52.

    Article  PubMed  CAS  Google Scholar 

  42. Knaus HG, Garcia-Calvo M, Kaczorowski GJ et al. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 1994; 269(6):3921–4.

    PubMed  CAS  Google Scholar 

  43. Grahammer F, Warth R, Barhanin J et al. The small conductance K+ channel, KCNQ1: expression, function and subunit composition in murine trachea. J Biol Chem 2001; 276(45):42268–75.

    Article  PubMed  CAS  Google Scholar 

  44. Parcej DN, Scott VE, Dolly JO. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain. Biochemistry 1992; 31(45):11084–8.

    Article  PubMed  CAS  Google Scholar 

  45. Larsson HP, Baker OS, Dhillon DS et al. Transmembrane movement of the shaker K+ channel S4. Neuron 1996; 16(2):387–97.

    Article  PubMed  CAS  Google Scholar 

  46. Mannuzzu LM, Moronne MM, Isacoff EY. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 1996; 271(5246):213–6.

    Article  PubMed  CAS  Google Scholar 

  47. Noda M, Shimizu S, Tanabe T et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984; 312(5990):121–7.

    Article  PubMed  CAS  Google Scholar 

  48. Greenblatt RE, Blatt Y, Montal M. The structure of the voltage-sensitive sodium channel. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure. FEBS Lett 1985; 193(2):125–34.

    Article  PubMed  CAS  Google Scholar 

  49. Guy HR, Seetharamulu P. Molecular model of the action potential sodium channel. Proc Natl Acad Sci USA 1986; 83(2):508–12.

    Article  PubMed  CAS  Google Scholar 

  50. Bezanilla F, Perozo E, Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J 1994; 66(4):1011–21.

    Article  PubMed  CAS  Google Scholar 

  51. Sigg D, Stefani E, Bezanilla F. Gating current noise produced by elementary transitions in Shaker potassium channels. Science 1994; 264(5158):578–82.

    Article  PubMed  CAS  Google Scholar 

  52. Aggarwal SK, MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 1996; 16(6):1169–77.

    Article  PubMed  CAS  Google Scholar 

  53. Schoppa NE, McCormack K, Tanouye MA et al. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 1992; 255(5052):1712–5.

    Article  PubMed  CAS  Google Scholar 

  54. Gandhi CS, Loots E, Isacoff EY. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 2000; 27(3):585–95.

    Article  PubMed  CAS  Google Scholar 

  55. Jiang Y, Ruta V, Chen J et al. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 2003; 423(6935):42–8.

    Article  PubMed  CAS  Google Scholar 

  56. Iwasaki H, Murata Y, Kim Y et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci USA 2008; 105(23):7970–5.

    Article  PubMed  CAS  Google Scholar 

  57. Murata Y, Okamura Y. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol 2007; 583(Pt 3):875–89.

    Article  PubMed  CAS  Google Scholar 

  58. Murata Y, Iwasaki H, Sasaki M et al. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 2005; 435(7046):1239–43.

    Article  PubMed  CAS  Google Scholar 

  59. Ramsey IS, Moran MM, Chong JA et al. A voltage-gated proton-selective channel lacking the pore domain. Nature 2006; 440(7088):1213–6.

    Article  PubMed  CAS  Google Scholar 

  60. Sasaki M, Takagi M, Okamura Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 2006; 312(5773):589–92.

    Article  PubMed  CAS  Google Scholar 

  61. Posson DJ, Ge P, Miller C et al. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 2005; 436(7052):848–51.

    Article  PubMed  CAS  Google Scholar 

  62. Pathak M, Yarov-Yarovoy V, Agarwal G et al. Closing in on the resting state of the Shaker K(+) channel. Neuron 2007; 56(1):124–40.

    Article  PubMed  CAS  Google Scholar 

  63. Treptow W, Marrink SJ, Tarek M. Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations. J Phys Chem B 2008; 112(11):3277–82.

    Article  PubMed  CAS  Google Scholar 

  64. Treptow W, Tarek M, Klein ML. Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 2009; 131(6):2107–9.

    Article  PubMed  CAS  Google Scholar 

  65. Bezanilla F. How membrane proteins sense voltage. Nat Rev Mol Cell Biol 2008; 9(4):323–32.

    Article  PubMed  CAS  Google Scholar 

  66. Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu Rev Cell Dev Biol 2006; 22:23–52.

    Article  PubMed  CAS  Google Scholar 

  67. Schwappach B, Zerangue N, Jan YN et al. Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 2000; 26(1):155–67.

    Article  PubMed  CAS  Google Scholar 

  68. Flagg TP, Kurata HT, Masia R et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res 2008; 103(12):1458–65.

    Article  PubMed  CAS  Google Scholar 

  69. Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 2003; 278(43):41577–80.

    Article  PubMed  CAS  Google Scholar 

  70. Chan KW, Zhang H, Logothetis DE. N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 2003; 22(15):3833–43.

    Article  PubMed  CAS  Google Scholar 

  71. Ueda K, Matsuo M, Tanabe K et al. Comparative aspects of the function and mechanism of SUR1 and MDR1 proteins. Biochim Biophys Acta 1999; 1461(2):305–13.

    Article  PubMed  CAS  Google Scholar 

  72. Ueda K, Inagaki N, Seino S. MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 1997; 272(37):22983–6.

    Article  PubMed  CAS  Google Scholar 

  73. Eliasson L, Renstrom E, Ammala C et al. PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science 1996; 271(5250):813–5.

    Article  PubMed  CAS  Google Scholar 

  74. Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984; 312(5993):446–8.

    Article  PubMed  CAS  Google Scholar 

  75. Alekseev AE, Hodgson DM, Karger AB et al. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol 2005; 38(6):895–905.

    Article  PubMed  CAS  Google Scholar 

  76. Zingman LV, Hodgson DM, Bast PH et al. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 2002; 99(20):13278–83.

    Article  PubMed  CAS  Google Scholar 

  77. Zingman LV, Alekseev AE, Hodgson-Zingman DM et al. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 2007; 103(5):1888–93.

    Article  PubMed  CAS  Google Scholar 

  78. Fan Z, Neff RA. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation. J Physiol 2000; 529(Pt 3):707–21.

    Article  PubMed  CAS  Google Scholar 

  79. Tucker SJ, Gribble FM, Zhao C et al. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 1997; 387(6629):179–83.

    Article  PubMed  CAS  Google Scholar 

  80. Zerangue N, Schwappach B, Jan YN et al. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 1999; 22(3):537–48.

    Article  PubMed  CAS  Google Scholar 

  81. Koster J, Kurata HT, Enkvetchakul D et al. DEND mutation in Kir6.2 (KCNJ11) reveals a flexible N-terminal region critical for ATP-sensing of the KATP channel. Biophysical Journal 2008; 95(10):4689–97.

    Article  PubMed  CAS  Google Scholar 

  82. Mlynarski W, Tarasov AI, Gach A et al. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Clin Pract Neurol 2007; 3(11):640–5.

    Article  PubMed  CAS  Google Scholar 

  83. Shimomura K, Horster F, de Wet H et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology 2007; 69(13):1342–9.

    Article  PubMed  CAS  Google Scholar 

  84. Drain P, Li L, Wang J. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci USA 1998; 95(23):13953–8.

    Article  PubMed  CAS  Google Scholar 

  85. Antcliff JF, Haider S, Proks P et al. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 2005; 24(2):229–39.

    Article  PubMed  CAS  Google Scholar 

  86. Enkvetchakul D, Nichols CG. Gating mechanism of KATP channels: function fits form. J Gen Physiol 2003; 122(5):471–80.

    Article  PubMed  CAS  Google Scholar 

  87. Hollenstein K, Frei DC, Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature 2007; 446(7132):213–6.

    Article  PubMed  CAS  Google Scholar 

  88. Dawson RJ, Locher KP. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007; 581(5):935–8.

    Article  PubMed  CAS  Google Scholar 

  89. Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 2002; 296(5570):1091–8.

    Article  PubMed  CAS  Google Scholar 

  90. Nakahira K, Shi G, Rhodes KJ et al. Selective interaction of voltage-gated K+ channel beta-subunits with alpha-subunits. J Biol Chem 1996; 271(12):7084–9.

    Article  PubMed  CAS  Google Scholar 

  91. Rhodes KJ, Keilbaugh SA, Barrezueta NX et al. Association and colocalization of K+ channel alpha-and beta-subunit polypeptides in rat brain. J Neurosci 1995; 15(7 Pt 2):5360–71.

    PubMed  CAS  Google Scholar 

  92. Weng J, Cao Y, Moss N et al. Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem 2006; 281(22):15194–200.

    Article  PubMed  CAS  Google Scholar 

  93. Pan Y, Weng J, Cao Y et al. Functional coupling between the Kv1.1 channel and aldoketoreductase Kvbeta1. J Biol Chem 2008; 283(13):8634–42.

    Article  PubMed  CAS  Google Scholar 

  94. Gulbis JM, Mann S, MacKinnon R. Structure of a voltage-dependent K+ channel beta subunit. Cell 1999; 97(7):943–52.

    Article  PubMed  CAS  Google Scholar 

  95. Rettig J, Heinemann SH, Wunder F et al. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 1994; 369(6478):289–94.

    Article  PubMed  CAS  Google Scholar 

  96. Heinemann S, Rettig J, Scott V et al. The inactivation behaviour of voltage-gated K-channels may be determined by association of alpha-and beta-subunits. J Physiol Paris 1994; 88(3):173–80.

    Article  PubMed  CAS  Google Scholar 

  97. McCormack K, Connor JX, Zhou L et al. Genetic analysis of the mammalian K+ channel beta subunit Kvbeta 2 (Kcnab2). J Biol Chem 2002; 277(15):13219–28.

    Article  PubMed  CAS  Google Scholar 

  98. Smart SL, Lopantsev V, Zhang CL et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998; 20(4):809–19.

    Article  PubMed  CAS  Google Scholar 

  99. Connor JX, McCormack K, Pletsch A et al. Genetic modifiers of the Kv beta2-null phenotype in mice. Genes Brain Behav 2005; 4(2):77–88.

    PubMed  CAS  Google Scholar 

  100. McCormack T, McCormack K, Nadal MS et al. The effects of Shaker beta-subunits on the human lymphocyte K+ channel Kv1.3. J Biol Chem 1999; 274(29):20123–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Gulbis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Clarke, O.B., Gulbis, J.M. (2012). Oligomerization at the Membrane. In: Matthews, J.M. (eds) Protein Dimerization and Oligomerization in Biology. Advances in Experimental Medicine and Biology, vol 747. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3229-6_8

Download citation

Publish with us

Policies and ethics