Skip to main content

Genetic Modifications of Plant Cell Walls to Increase Biomass and Bioethanol Production

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

To date, most ethanolic fuel is generated from “first generation” crop feedstocks by conversion of soluble sugars and starch to bioethanol. However, these crops exploit land resources required for production of food. On the other hand, utilization of “second generation” lignocellulosic biofuels derived from the inedible parts of plants remains problematic as high energy inputs and harsh conditions are required to break down the composite cell walls into fermentable sugars. This chapter reviews and discusses genetic engineering approaches for the generation of plants modified to increase cellulose synthesis, enhance plant growth rates, cell wall porosity and solubility, as well as improve cell wall sugar yields following enzymatic hydrolysis. Strategies focusing on increased accessibility of cellulose-degrading enzymes to their substrates have been developed. These approaches reduce cell wall crystallinity or alter the hemicellulose–lignin complexes. A novel approach to cell wall modification involving the introduction of noncrystalline, soluble polysaccharides into cell walls is also presented. The use of such approaches may promote and accelerate the future use of lignocellulosic feedstocks for the bioethanol industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBD:

Cellulose binding domain

CBM:

Cellulose binding module

CDH:

Cellobiose dehydrogenase

CesA:

Cellulose synthase

FAE:

Ferulic acid esterase

GX:

Glucuronoxylan

HG:

Homogalacturonan

PME:

Pectin methylesterase

PMEi:

Pectin methylesterase inhibitor

QTL:

Quantitative trait locus

RGI:

Rhamanogalacturonan I

SPS:

Sucrose phosphate synthase

SuSy:

Sucrose synthase

UGPase:

UDP-glucose pyrophosphorylase

References

  1. Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72

    Article  CAS  Google Scholar 

  2. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  CAS  Google Scholar 

  3. Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  Google Scholar 

  4. Awano T, Takabe K, Fujita M (1998) Localization of glucuronoxylans in Japanese beech visualized by immunogold labelling. Protoplasma 202:213–222

    Article  CAS  Google Scholar 

  5. Ayers AR, Ayers SB, Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181

    Article  CAS  Google Scholar 

  6. Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893–903

    Article  CAS  Google Scholar 

  7. Bao W, Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80

    Article  CAS  Google Scholar 

  8. Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175:389–395

    Article  CAS  Google Scholar 

  9. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Article  CAS  Google Scholar 

  10. Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agr Syst 96:224–236

    Article  Google Scholar 

  11. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546

    Article  CAS  Google Scholar 

  12. Buanafina MMD, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6:264–280

    Article  CAS  Google Scholar 

  13. Buanafina MMD, Langdon T, Hauck B, Dalton S, Timms-Taravella E, Morris P (2010) Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotechnol J 8:316–331

    Article  CAS  Google Scholar 

  14. Buanafina MMD, Langdon T, Hauck B, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl Biochem Biotechnol 130:416–426

    Article  Google Scholar 

  15. Canam T, Park JY, Yu KY, Campbell MM, Ellis DD, Mansfield SD (2006) Varied growth, biomass and cellulose content in tobacco expressing yeast-derived invertases. Planta 224:1315–1327

    Article  CAS  Google Scholar 

  16. Canevscini G, Borer P, Dreyer J (1991) Cellobiose dehydrogenases of Sporotrichum Chrysosporium thermophile. Eur J Biochem 198:43–52

    Article  Google Scholar 

  17. Carpita N, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physyologists, Rockville

    Google Scholar 

  18. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  Google Scholar 

  19. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  Google Scholar 

  20. Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  CAS  Google Scholar 

  21. Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, Kitamoto K (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76:2556–2561

    Article  CAS  Google Scholar 

  22. Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:9783–9788

    Article  CAS  Google Scholar 

  23. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  Google Scholar 

  24. Choi D, Lee Y, Cho HT, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    Article  CAS  Google Scholar 

  25. Clark J, Deswarte F (2008) The biorefinery concept–an integrated approach. In: Clark JH (ed) Introduction to chemicals from biomass. Renewable resources. Wiley, Padstow

    Chapter  Google Scholar 

  26. Coleman HD, Beamish L, Reid A, Park JY, Mansfield SD (2010) Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Res 19:269–283

    Article  CAS  Google Scholar 

  27. Coleman HD, Samuels AL, Guy RD, Mansfield SD (2008) Perturbed lignification impacts tree growth in hybrid poplar–a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol 148:1229–1237

    Article  CAS  Google Scholar 

  28. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23

    Article  CAS  Google Scholar 

  29. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  Google Scholar 

  30. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  31. DeAngelis PL, Jing W, Graves MV, Burbank DE, VanEtten JL (1997) Hyaluronan synthase of chlorella virus PBCV-1. Science 278:1800–1803

    Article  CAS  Google Scholar 

  32. Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  CAS  Google Scholar 

  33. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  CAS  Google Scholar 

  34. Din N, Gilkes N, Tekant B, Miller R, Warren R, Kilburn D (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat Biotechnol 9:1096–1099

    Article  CAS  Google Scholar 

  35. DOE (2004) Biomass feedstock composition and property database. http://www.afdc.energy.gov/biomass/progs/search1.cgi. Accessed 15 Jun 2010

  36. DOE (2005) GTL roadmap: systems biology for energy and environment. US department of energy. http://genomicsgtl.energy.gov/roadmap. Accessed 8 May 2010

  37. DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. U.S. Department of Energy. http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml. Accessed 8 May 2010

  38. Ezaki N, Kido N, Takahashi K, Katou K (2005) The role of wall Ca2+ in the regulation of wall extensibility during the acid-induced extension of soybean hypocotyl cell walls. Plant Cell Physiol 46:1831–1838

    Article  CAS  Google Scholar 

  39. FAO (2008) Forests and energy. http://www.fao.org/docrep/010/i0139e/i0139e00.htm. Accessed 1 Aug 2010

  40. FAO (2010) The global forest resources assessment. http://www.fao.org/forestry/fra/fra2010/en/. Accessed 1 Aug 2010

  41. Fleming A, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  42. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    Article  CAS  Google Scholar 

  43. Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  44. Gardner A, Davies HV, Burch LR (1992) Purification and properties of fructokinase from developing tubers of potato (Solanum tuberosum L.). Plant Physiol 100:178–183

    Article  CAS  Google Scholar 

  45. Gelfand I, Snapp SS, Robertson GP (2010) Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the US Midwest. Environ Sci Technol 44:4006–4011

    Article  CAS  Google Scholar 

  46. Grabber JH, Hatfield RD, Lu FC, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516

    Article  CAS  Google Scholar 

  47. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  CAS  Google Scholar 

  48. Graves MV, Burbank DE, Roth R, Heuser J, DeAngelis PL, Van Etten JL (1999) Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae. Virology 257:15–23

    Article  CAS  Google Scholar 

  49. Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, Mellerowicz EJ (2008) Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol J 6:62–72

    CAS  Google Scholar 

  50. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  51. Grondahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52:359–366

    Article  CAS  Google Scholar 

  52. Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51

    Article  CAS  Google Scholar 

  53. Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  CAS  Google Scholar 

  54. Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1:51–61

    Article  CAS  Google Scholar 

  55. Hartati S, Sudarmonowati E, Park YW, Kaku T, Kaida R, Baba K, Hayashi T (2008) Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon. Plant Physiol 147:552–561

    Article  CAS  Google Scholar 

  56. Hayashi T (1989) Xyloglucans in the primary-cell wall. Annu Rev Plant Physiol 40:139–168

    Article  CAS  Google Scholar 

  57. Heaton E, Long S, Voigt T, Jones M, Clifton-Brown J (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob change 9:433–451

    Article  Google Scholar 

  58. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  CAS  Google Scholar 

  59. Henriksson G, Salumets A, Divne C, Pettersson G (1997) Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem J 324(pt 3):833–838

    CAS  Google Scholar 

  60. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  61. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  Google Scholar 

  62. Huang HJ, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA (2009) Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenergy 33:234–246

    Article  CAS  Google Scholar 

  63. Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  64. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  CAS  Google Scholar 

  65. Joshi CP, Mansfield SD (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr Opin Plant Biol 10:220–226

    Article  CAS  Google Scholar 

  66. Jung J, O’Donoghue EM, Dijkwel PP, Brummell DA (2010) Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Sci 179:77–85

    Article  CAS  Google Scholar 

  67. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  68. Kitin P, Voelker S, Meinzer F, Beeckman H, Strauss S, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol. doi:101104/pp 110156224

    Google Scholar 

  69. Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefebvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  CAS  Google Scholar 

  70. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  Google Scholar 

  71. Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    Article  CAS  Google Scholar 

  72. Liang HY, Frost CJ, Wei XP, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. Clean Soil Air Water 36:662–668

    Article  CAS  Google Scholar 

  73. Lindberg B, Rosell KG, Svensson S (1973) Positions of O-acetyl groups in birch xylan. Sven Papperstidn 76:30–32

    CAS  Google Scholar 

  74. Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci U S A 107:616–621

    Article  CAS  Google Scholar 

  75. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  76. Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan XJ, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129:55–70

    Article  Google Scholar 

  77. Maloney VJ, Mansfield SD (2010) Characterization and varied expression of a membrane-bound endo-beta-1,4-glucanase in hybrid poplar. Plant Biotechnol J 8:294–307

    Article  CAS  Google Scholar 

  78. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  Google Scholar 

  79. Margolles-Clark E, Tenkanen M, Soderlund H, Penttila M (1996) Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem 237:553–560

    Article  CAS  Google Scholar 

  80. McQueen-Mason S, Durachko D, Cosgrove D (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    CAS  Google Scholar 

  81. Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    Article  CAS  Google Scholar 

  82. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  Google Scholar 

  83. Muir JP, Sanderson MA, Ocumpaugh WR, Jones RM, Reed RL (2001) Biomass production of ‘Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron J 93:896–901

    Article  Google Scholar 

  84. Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    Article  CAS  Google Scholar 

  85. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H (1998) A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576

    Article  CAS  Google Scholar 

  86. Obembe OO, Jacobsen E, Timmers J, Gilbert H, Blake AW, Knox JP, Visser RG, Vincken JP (2007) Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. J Plant Res 120:605–617

    Article  CAS  Google Scholar 

  87. Park JY, Canam T, Kang KY, Ellis DD, Mansfield SD (2008) Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res 17:181–192

    Article  CAS  Google Scholar 

  88. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  CAS  Google Scholar 

  89. Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106

    Article  CAS  Google Scholar 

  90. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  Google Scholar 

  91. Pauly M, Scheller HV (2000) O-Acetylation of plant cell wall polysaccharides: identification and partial characterization of a rhamnogalacturonan O-acetyl-transferase from potato suspension-cultured cells. Planta 210:659–667

    Article  CAS  Google Scholar 

  92. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  CAS  Google Scholar 

  93. Perlack R, Wright L, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  94. Perrin R, Wilkerson C, Keegstra K (2001) Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol Biol 47:115–130

    Article  CAS  Google Scholar 

  95. Pettersen RC (1984) The chemical-composition of wood. In: Rowell RC (ed) The chemistry of solid wood. Advances in chemistry series. American chemical society, Washington, DC

    Google Scholar 

  96. Pilling J, Willmitzer L, Fisahn J (2000) Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta 210:391–399

    Article  CAS  Google Scholar 

  97. Ragauskas A, Nagy M, Kim D, Eckert C, Hallett J, Liotta C (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  98. Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  99. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses—active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275: 167–178

    Article  CAS  Google Scholar 

  100. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  101. Rochange SF, Wenzel CL, McQueen-Mason SJ (2001) Impaired growth in transgenic plants over-expressing an expansin isoform. Plant Mol Biol 46:581–589

    Article  CAS  Google Scholar 

  102. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  103. Safra-Dassa L, Shani Z, Danin A, Roiz L, Shoseyov O, Wolf S (2006) Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breed 17:355–364

    Article  CAS  Google Scholar 

  104. Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788

    Article  CAS  Google Scholar 

  105. Sandhu AP, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2:840–850

    Article  CAS  Google Scholar 

  106. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuel Bioprod Bioref 4:209–226

    Article  CAS  Google Scholar 

  107. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  CAS  Google Scholar 

  108. Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    Article  CAS  Google Scholar 

  109. Shani Z, Dekel M, Jensen CS, Tzfira T, Goren R, Altman A, Shoseyov O (2000) Arabidopsis thaliana endo-1,4-beta-glucanase (cel1) promoter mediates uidA expression in elongating tissues of aspen (Populus tremula). J Plant Physiol 156:118–120

    Article  CAS  Google Scholar 

  110. Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O (2006) Expression of endo-1,4-beta-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep 25:1067–1074

    Article  CAS  Google Scholar 

  111. Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-β-glucanase (cel1). Mol Breed 14:321–330

    Article  Google Scholar 

  112. Shani Z, Dekel M, Tsabary G, Shoseyov O (1997) Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol 34:837–842

    Article  CAS  Google Scholar 

  113. Shani Z, Shoseyov O (2006) Cell wall proteins as a tool for plant cell modification. In: Hayashi T (ed) The science and lore of the plant cell wall: biosynthesis, structure and function. Brown Walker Press, Boca Raton

    Google Scholar 

  114. Shani Z, Shpigel E, Roiz L, Goren R, Vinocur B, Tzfira T, Altman A, Shoseyov O (1999) Cellulose binding domain increases cellulose synthase activiry in Acetobacter xylinum and biomass of transgenic plants. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer, Dordrecht

    Google Scholar 

  115. Shoseyov O, Levy I, Shani Z, Mansfield SD (2003) Modulation of wood fibers and paper by cellulose-binding domains. In: Mansfield D, Saddler JN (eds) Applications of enzymes to lignocellulosics. ACS symposium series, vol 855. American Chemical Society, Washington, DC

    Google Scholar 

  116. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  Google Scholar 

  117. Shpigel E, Roiz L, Goren R, Shoseyov O (1998) Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol 117:1185–1194

    Article  CAS  Google Scholar 

  118. Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:313–320

    Article  CAS  Google Scholar 

  119. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  Google Scholar 

  120. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  CAS  Google Scholar 

  121. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    Article  CAS  Google Scholar 

  122. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  CAS  Google Scholar 

  123. Van Parijs FR, Morreel K, Ralph J, Boerjan W, Merks RM (2010) Modeling lignin polymerization. I. simulation model of dehydrogenation polymers. Plant Physiol 153:1332–1344

    Article  CAS  Google Scholar 

  124. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  CAS  Google Scholar 

  125. Vincken J, Schols H, Oomen R, McCann M, Ulvskov P, Voragen A, Visser R (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant physiol 132:1781–1789

    Article  CAS  Google Scholar 

  126. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  CAS  Google Scholar 

  127. Vogler H, Caderas D, Mandel T, Kuhlemeier C (2003) Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol 53:267–272

    Article  CAS  Google Scholar 

  128. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    Article  CAS  Google Scholar 

  129. Watanabe T, Koshijima T (1988) Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation. Agric Biol Chem 52:2953–2955

    Article  CAS  Google Scholar 

  130. Watanabe T, Ohnishi J, Yamasaki Y, Kaizu S, Koshijima T (1989) Binding-site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric Biol Chem 53:2233–2252

    Article  CAS  Google Scholar 

  131. Weng J, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  Google Scholar 

  132. Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  Google Scholar 

  133. Wong DWS (2006) Feruloyl esterase—a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–112

    Article  CAS  Google Scholar 

  134. Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3:301–307

    Article  CAS  Google Scholar 

  135. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  CAS  Google Scholar 

  136. Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7:255–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Jonathan Gressel for his critical review, comments, and corrections on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Shani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abramson, M., Shoseyov, O., Hirsch, S., Shani, Z. (2013). Genetic Modifications of Plant Cell Walls to Increase Biomass and Bioethanol Production. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_18

Download citation

Publish with us

Policies and ethics