Skip to main content

Cytogenetics of Lymphomas

  • Chapter
  • First Online:
Book cover Neoplastic Diseases of the Blood

Abstract

Cytogenetic analysis relies on the production of banded metaphase chromosomes for analysis, but chronic lymphoid malignancies have proved notoriously difficult to karyotype as they have extremely variable rates of growth in culture. The highest number of proliferating cells has been identified in diffuse large B-cell lymphomas (DLBCL) and Burkitt lymphomas (BL), whilst follicular lymphomas (FL) and lymphoplasmacytic lymphomas show decreased proliferation when compared with normal mature B lymphocytes [1]. Therefore, it has been necessary to use a range of tests to determine the genetics of lymphomas, including fluorescence in situ hybridisation (FISH) applied to interphase cells (i-FISH) and metaphase spreads, multicoloured FISH, chromosome comparative genomic hybridisation (CGH) and array-based strategies: array CGH (aCGH) and single nucleotide polymorphism (SNP) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quijano S, Lopez A, Rasillo A, et al. Association between the proliferative rate of neoplastic B cells, their maturation stage, and underlying cytogenetic abnormalities in B-cell chronic lymphoproliferative disorders: analysis of a series of 432 patients. Blood. 2008;111(10):5130–41.

    Article  PubMed  CAS  Google Scholar 

  2. Hernandez JM, Mecucci C, Criel A, Meeus P, Michaux I, Van Hoof A, Verhoef G, Louwagie A, Scheiff JM, Michaux JL, Boogaerts M, Van den Berghe H. Cytogenetic analysis of B cell chronic lymphoid leukemias classified according to morphologic and immunophenotypic (FAB) criteria. Leukemia. 1995;9:2140–6.

    PubMed  CAS  Google Scholar 

  3. Matutes E, Oscier D, Garcia-Marco J, Ellis J, Copplestone A, Gillingham R, Hamblin T, Lens D, Swansbury GJ, Catovsky D. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 1996;92:382–8.

    Article  PubMed  CAS  Google Scholar 

  4. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80 % of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152–60.

    Article  PubMed  CAS  Google Scholar 

  5. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping. Leukemia. 2007;21(12):2442–51.

    Article  PubMed  CAS  Google Scholar 

  6. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  PubMed  CAS  Google Scholar 

  7. Krober A, Seiler T, Benner A, et al. VH mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–6.

    PubMed  CAS  Google Scholar 

  8. Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100(4):1177–84.

    PubMed  CAS  Google Scholar 

  9. Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia. 2009;23(1):117–24.

    Article  PubMed  CAS  Google Scholar 

  10. Rudenko HC, Else M, Dearden C, et al. Characterising the TP53-deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array-based comparative genomic hybridisation. Leuk Lymphoma. 2008;49(10):1879–86.

    Article  PubMed  CAS  Google Scholar 

  11. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic ­lymphocytic leukaemia (the LRF CLL4 Trial): a randomised ­controlled trial. Lancet. 2007;370(9583):230–9.

    Article  PubMed  CAS  Google Scholar 

  12. Zenz T, Habe S, Denzel T, Winkler D, Dohner H, Stilgenbauer S. How little is too much? p53 inactivation: from laboratory cutoff to biological basis of chemotherapy resistance. Leukemia. 2008;22(12):2257–8.

    Article  PubMed  CAS  Google Scholar 

  13. Dohner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85(6):1580–9.

    PubMed  CAS  Google Scholar 

  14. Guarini A, Gaidano G, Mauro FR, et al. Chronic lymphocytic ­leukemia patients with highly stable and indolent disease show distinctive phenotypic and genotypic features. Blood. 2003;102(3):1035–41.

    Article  PubMed  CAS  Google Scholar 

  15. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  PubMed  CAS  Google Scholar 

  16. Chena C, Avalos JS, Bezares RF, et al. Biallelic deletion 13q14.3 in patients with chronic lymphocytic leukemia: cytogenetic, FISH and clinical studies. Eur J Haematol. 2008;81(2):94–9.

    Article  PubMed  Google Scholar 

  17. Dyke DLV, Shanafelt TD, Call TG, et al. A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia. Br J Haematol. 2010;148(4):544–50.

    Article  PubMed  Google Scholar 

  18. Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008;68(4):1012–21.

    Article  PubMed  CAS  Google Scholar 

  19. Mayr C, Speicher MR, Kofler DM, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood. 2006;107(2):742–51.

    Article  PubMed  CAS  Google Scholar 

  20. Van Den Neste E, Robin V, Francart J, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715–22.

    Article  CAS  Google Scholar 

  21. Woyach JA, Heerema NA, Zhao J, et al. Dic(17;18)(p11.2;p11.2) is a recurring abnormality in chronic lymphocytic leukaemia associated with aggressive disease. Br J Haematol. 2010;148(5):754–9.

    Article  PubMed  Google Scholar 

  22. Cavazzini F, Hernandez JA, Gozzetti A, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008;142(4):529–37.

    Article  PubMed  Google Scholar 

  23. Quintero-Rivera F, Nooraie F, Rao PN. Frequency of 5’IGH deletions in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2009;190(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  24. Haferlach C, Dicker F, Weiss T, et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromosomes Cancer. 2010;49(9):851–9.

    PubMed  CAS  Google Scholar 

  25. Put N, Meeus P, Chatelain B, et al. Translocation t(14;18) is not associated with inferior outcome in chronic lymphocytic leukemia. Leukemia. 2009;23(6):1201–4.

    Article  PubMed  CAS  Google Scholar 

  26. Michaux L, Dierlamm J, Wlodarska I, Bours V, Van Den Berghe H, Hagemeijer A. t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: A review of 23 cases. Cancer Genet Cytogenet. 1997;94(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  27. Chapiro E, Radford-Weiss I, Bastard C, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22(11):2123–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yin CC, Lin KI-C, Ketterling RP, et al. Chronic Lymphocytic Leukemia With t(2;14)(p16;q32) Involves the BCL11A and IgH Genes and Is Associated With Atypical Morphologic Features and Unmutated IgVH Genes. Am J Clin Pathol. 2009;131(5):663–70.

    Article  PubMed  Google Scholar 

  29. Huh YO, Lin KI-C, Vega F, et al. MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol. 2008;142(1):36–44.

    Article  PubMed  Google Scholar 

  30. Nagel I, Bug S, Tonnies H, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia. 2009;23(11):2153–5.

    Article  PubMed  CAS  Google Scholar 

  31. Wlodarska I, Matthews C, Veyt E, et al. Telomeric IGH Losses Detectable by Fluorescence in Situ Hybridization in Chronic Lymphocytic Leukemia Reflect Somatic VH Recombination Events. J Mol Diagn. 2007;9(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  32. Byrd JC, Smith L, Hackbarth ML, et al. Interphase Cytogenetic Abnormalities in Chronic Lymphocytic Leukemia May Predict Response to Rituximab. Cancer Res. 2003;63(1):36–8.

    PubMed  CAS  Google Scholar 

  33. Tam CS, Otero-Palacios J, Abruzzo LV, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141(1):36–40.

    Article  PubMed  Google Scholar 

  34. Tsimberidou A-M, Tam C, Abruzzo LV, et al. Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer. 2009;115(2):373–80.

    Article  PubMed  Google Scholar 

  35. Lozanski G, Heerema NA, Flinn IW, et al. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood. 2004;103(9):3278–81.

    Article  PubMed  CAS  Google Scholar 

  36. Lehmann S, Ogawa S, Raynaud SD, et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer. 2008;112(6):1296–305.

    Article  PubMed  CAS  Google Scholar 

  37. Forconi F, Rinaldi A, Kwee I, et al. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol. 2008;143(4):532–6.

    PubMed  Google Scholar 

  38. Chapiro E, Leporrier N, Radford-Weiss I, et al. Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res. 2010;34(1):63–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kujawski L, Ouillette P, Erba H, et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood. 2008;112(5):1993–2003.

    Article  PubMed  CAS  Google Scholar 

  40. Gunnarsson R, Isaksson A, Mansouri M, et al. Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia. 2009;24(1):211–5.

    Article  PubMed  Google Scholar 

  41. Ferreira BI, Garcia JF, Suela J, et al. Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica. 2008;93(5):670–9.

    Article  PubMed  CAS  Google Scholar 

  42. Shanafelt TD, Rabe KG, Kay NE et al. Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia. Cancer 2010;9999(9999):NA.

    Google Scholar 

  43. Ruchlemer R, Parry-Jones N, Brito-Babapulle V, et al. B-prolymphocytic leukaemia with t(11;14) revisited: a splenomegalic form of mantle cell lymphoma evolving with leukaemia. Br J Haematol. 2004;125(3):330–6.

    Article  PubMed  Google Scholar 

  44. Lens D. ME, Catovsky D, Coignet LJ. Frequent deletions at 11q23 and 13q14 in B cell prolymphocytic leukemia (B-PLL). Leukemia. 2000;14(3):427–30.

    Article  PubMed  CAS  Google Scholar 

  45. Del Giudice I, Davis Z, Matutes E, et al. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL). Leukemia. 2006;20(7):1231–7.

    Article  PubMed  CAS  Google Scholar 

  46. Kuriakose P, Perveen N, Maeda K, Wiktor A, Van Dyke DL. Translocation (8;14)(q24;q32) as the sole cytogenetic abnormality in B-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2004;150(2):156–8.

    Article  PubMed  CAS  Google Scholar 

  47. Merchant S, Schlette E, Sanger W, Lai R, Medeiros LJ. Mature B-cell leukemias with more than 55 % prolymphocytes. Arch Pathol Lab Med. 2003;127(3):305–9.

    PubMed  Google Scholar 

  48. Crisostomo RH, Fernandez JA, Caceres W. Complex karyotype including chromosomal translocation (8;14) (q24;q32) in one case with B-cell prolymphocytic leukemia. Leuk Res. 2007;31(5):699–701.

    Article  PubMed  CAS  Google Scholar 

  49. Del Giudice I, Osuji N, Dexter T, et al. B-cell prolymphocytic leukemia and chronic lymphocytic leukemia have distinctive gene expression signatures. Leukemia. 2009;23(11):2160–7.

    Article  PubMed  Google Scholar 

  50. Matutes E, Oscier D, Montalban C, et al. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2007;22(3):487–95.

    Article  PubMed  Google Scholar 

  51. Novara F, Arcaini L, Merli M, et al. High-resolution genome-wide array comparative genomic hybridization in splenic marginal zone B-cell lymphoma. Hum Pathol. 2009;40(11):1628–37.

    Article  PubMed  CAS  Google Scholar 

  52. Baró C, Salido M, Espinet B, et al. New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by Spectral Karyotyping (SKY). Leuk Res. 2008;32(5):727–36.

    Article  PubMed  CAS  Google Scholar 

  53. Watkins AJ, Huang Y, Ye H, et al. Splenic marginal zone lymphoma: characterization of 7q deletion and its value in diagnosis. J Pathol. 2010;220(4):461–74.

    PubMed  CAS  Google Scholar 

  54. Chacon JI, Mollejo M, Munoz E, et al. Splenic marginal zone lymphoma: clinical characteristics and prognostic factors in a series of 60 patients. Blood. 2002;100(5):1648–54.

    PubMed  CAS  Google Scholar 

  55. Salido M, Baro C, Oscier D et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood 2010:blood-2010-02-267476.

    Google Scholar 

  56. Remstein ED, Law M, Mollejo M, Piris MA, Kurtin PJ, Dogan A. The prevalence of IG translocations and 7q32 deletions in splenic marginal zone lymphoma. Leukemia. 2007;22(6):1268–72.

    Article  PubMed  CAS  Google Scholar 

  57. Kluin-Nelemans H, Beverstock G, Mollevanger P, et al. Proliferation and cytogenetic analysis of hairy cell leukemia upon stimulation via the CD40 antigen. Blood. 1994;84(9):3134–41.

    PubMed  CAS  Google Scholar 

  58. Dierlamm J, Stefanova M, Wlodarska I, et al. Chromosomal gains and losses are uncommon in hairy cell leukemia: a study based on comparative genomic hybridization and interphase fluorescence in situ hybridization. Cancer Genet Cytogenet. 2001;128(2):164–7.

    Article  PubMed  CAS  Google Scholar 

  59. Sambani C, Trafalis DTP, Mitsoulis-Mentzikoff C, et al. Clonal chromosome rearrangements in hairy cell leukemia: personal experience and review of literature. Cancer Genet Cytogenet. 2001;129(2):138–44.

    Article  PubMed  CAS  Google Scholar 

  60. Nordgren A, Corcoran M, Sääf A, et al. Characterisation of hairy cell leukaemia by tiling resolution array-based comparative Genome hybridisation: a series of 13 cases and review of the literature. Eur J Haematol. 2010;84(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  61. Chen Y-H, Gao J, Fan G, Peterson LC. Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in non-mantle cell B-cell neoplasms. Mod Pathol. 2009;23(1):105–12.

    Article  PubMed  CAS  Google Scholar 

  62. Mansoor A, Medeiros LJ, Weber DM, et al. Cytogenetic Findings in Lymphoplasmacytic Lymphoma /Waldenström Macroglobulinemia. Am J Clin Pathol. 2001;116(4):543–9.

    Article  PubMed  CAS  Google Scholar 

  63. Cook JR, Aguilera NI, Reshmi S, et al. Deletion 6q is not a characteristic marker of nodal lymphoplasmacytic lymphoma. Cancer Genet Cytogenet. 2005;162(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  64. Sargent RL, Cook JR, Aguilera NI, et al. Fluorescence immunophenotypic and interphase cytogenetic characterization of nodal lymphoplasmacytic lymphoma. Am J Surg Pathol. 2008;32(11):1643–53. 10.097/PAS.0b013e3181758806.

    Article  PubMed  Google Scholar 

  65. Wong KF, So CC, Chan JCW, Kho BCS, Chan JKC. Gain of chromosome 3/3q in B-cell chronic lymphoproliferative disorder is associated with plasmacytoid differentiation with or without IgM overproduction. Cancer Genet Cytogenet. 2002;136(1):82–5.

    Article  PubMed  CAS  Google Scholar 

  66. Michaux L, Dierlamm J, Wlodarska I, Stul M, Bosly A, Delannoy A, Louwagie A, Mecucci C, Cassiman JJ, van den Berghe H, Michaux JL. Trisomy 3 is a consistent chromosome change in malignant lymphoproliferative disorders preceded by cold agglutinin disease. Br J Haematol. 1995;91(2):421–4.

    Article  PubMed  CAS  Google Scholar 

  67. Buckley PG, Walsh SH, Laurell A, et al. Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations. Leuk Lymphoma. 2009;50(9):1528–34.

    Article  PubMed  CAS  Google Scholar 

  68. Offit K, Parsa N, Filippa D, Jhanwar S, Chaganti R. t(9;14)(p13;q32) denotes a subset of low-grade non-Hodgkin’s ­lymphoma with plasmacytoid differentiation. Blood. 1992;80(10):2594–9.

    PubMed  CAS  Google Scholar 

  69. Schop RFJ, Kuehl WM, Van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100(8):2996–3001.

    Article  PubMed  CAS  Google Scholar 

  70. Cook JR, Ives Aguilera N, Reshmi-Skarja S, et al. Lack of PAX5 rearrangements in Lymphoplasmacytic Lymphomas: Reassessing the Reported Association with t(9;14). Human Pathology. 2004;35(4):447–54.

    Article  PubMed  CAS  Google Scholar 

  71. George TI, Wrede JE, Bangs CD, Cherry AM, Warnke RA, Arber DA. Low-Grade B-Cell Lymphomas With Plasmacytic Differentiation Lack PAX5 Gene Rearrangements. J Mol Diagn. 2005;7(3):346–51.

    Article  PubMed  Google Scholar 

  72. Poppe B, Paepe PD, Michaux L, et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer. 2005;44(2):218–23.

    Article  PubMed  CAS  Google Scholar 

  73. Ye H, Chuang S-S, Dogan A, Isaacson PG, Du M-Q. t(1;14) and t(11;18) in the differential diagnosis of Waldenstrom’s macroglobulinemia. Mod Pathol. 2004;17(9):1150–4.

    Article  PubMed  Google Scholar 

  74. Gomyo H. KK, Maeda A, Mizuno I, Funada Y, Koizumi T, Fukui E, Hanioka K, Ogura M, Murayama T. t(14;18)(q32;q21)-bearing pleural MALT lymphoma with IgM paraproteinemia: value of detection of specific cytogenetic abnormalities in the differential diagnosis of MALT lymphoma and lymphoplasmacytic lymphoma. Hematology. 2007;12(4):315–8.

    Article  PubMed  CAS  Google Scholar 

  75. Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101(6):2335–9.

    Article  PubMed  CAS  Google Scholar 

  76. Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18(10):1722–6.

    Article  PubMed  CAS  Google Scholar 

  77. Murga Penas EM, Callet-Bauchu E, Ye H, et al. The translocations t(6;18;11)(q24;q21;q21) and t(11;14;18)(q21;q32;q21) lead to a fusion of the API2 and MALT1 genes and occur in MALT lymphomas. Haematologica. 2007;92(3):405–9.

    Article  PubMed  Google Scholar 

  78. Tan SY, Ye H, Liu H, et al. t(11;18)(q21;q21)-positive transformed MALT lymphoma. Histopathology. 2008;52(6):777–80.

    Article  PubMed  CAS  Google Scholar 

  79. Starostik P, Patzner J, Greiner A, et al. Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood. 2002;99(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  80. Ho L, Davis RE, Conne B, et al. MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-{kappa}B-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood. 2005;105(7):2891–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ye H, Gong L, Liu H, et al. MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol. 2005;205(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  82. Libra M, Gloghini A, Malaponte G, et al. Association of t(14;18) translocation with HCV infection in gastrointestinal MALT lymphomas. J Hepatol. 2008;49(2):170–4.

    Article  PubMed  CAS  Google Scholar 

  83. Nakamura S, Ye H, Bacon CM, et al. Gastric MALT lymphoma with t(14;18)(q32;q21) involving IGH and BCL2 genes that responded to Helicobacter pylori eradication. J Clin Pathol. 2007;60:1171–3.

    Article  PubMed  Google Scholar 

  84. Maes B, Demunter A, Peeters B, De Wolf-Peeters C. BCL10 mutation does not represent an important pathogenic mechanism in gastric MALT-type lymphoma, and the presence of the API2-MLT fusion is associated with aberrant nuclear BCL10 expression. Blood. 2002;99(4):1398–404.

    Article  PubMed  CAS  Google Scholar 

  85. Chuang S-S, Liu H, Ye H, Martín-Subero JI, Siebert R, Huang W-T. Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B-cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin κ chain-BCL10. J Clin Pathol. 2007;60:727–8.

    Article  PubMed  Google Scholar 

  86. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent ­chromosomal aberration in MALT lymphoma. Leukemia. 2005;19(4):652–8.

    PubMed  CAS  Google Scholar 

  87. Goatly A, Bacon CM, Nakamura S, et al. FOXP1 abnormalities in lymphoma: translocation breakpoint mapping reveals insights into deregulated transcriptional control. Mod Pathol. 2008;21(7):902–11.

    Article  PubMed  CAS  Google Scholar 

  88. Vinatzer U, Gollinger M, Müllauer L, Raderer M, Chott A, Streubel B. Mucosa-Associated Lymphoid Tissue Lymphoma: Novel Translocations Including Rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14(20):6426–31.

    Article  PubMed  CAS  Google Scholar 

  89. Remstein ED, Kurtin PJ, James CD, Wang X-Y, Meyer RG, Dewald GW. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol. 2002;161(1):63–71.

    Article  PubMed  Google Scholar 

  90. João C, Farinha P, Silva MGd, Martins C, Crespo M, Cabeçadas J. Cytogenetic abnormalities in MALT lymphomas and their precursor lesions from different organs. A fluorescence in situ hybridization (FISH) study. Histopathology. 2007;50(2):217–24.

    Article  PubMed  Google Scholar 

  91. Streubel B, Seitz G, Stolte M, Birner P, Chott A, Raderer M. MALT lymphoma associated genetic aberrations occur at different frequencies in primary and secondary intestinal MALT lymphomas. Gut. 2006;55(11):1581–5.

    Article  PubMed  CAS  Google Scholar 

  92. Honma K, Tsuzuki S, Nakagawa M, et al. TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer. 2008;47(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  93. Liu H, Ye H, Dogan A, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood. 2001;98(4):1182–7.

    Article  PubMed  CAS  Google Scholar 

  94. Liu H, Ye H, Ruskone-Fourmestraux A, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology. 2002;122(5):1286–94.

    Article  PubMed  CAS  Google Scholar 

  95. Wundisch T, Thiede C, Morgner A, et al. Long-term follow-up of gastric MALT lymphoma after helicobacter pylori eradication. J Clin Oncol. 2005;23(31):8018–24.

    Article  PubMed  Google Scholar 

  96. Levy M, Copie-Bergman C, Gameiro C, et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol. 2005;23(22):5061–6.

    Article  PubMed  Google Scholar 

  97. Dong G, Liu C, Ye H, et al. BCL10 nuclear expression and t(11;18)(q21;q21) indicate nonresponsiveness to Helicobacter pylori eradication of Chinese primary gastric MALT lymphoma. Int J Hematol. 2008;88(5):516–23.

    Article  PubMed  CAS  Google Scholar 

  98. Ye H, Gong L, Liu H, et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut. 2006;55(1):137–8.

    Article  PubMed  CAS  Google Scholar 

  99. Zhou Y, Ye H, Martin-Subero JI, et al. The pattern of genomic gains in salivary gland MALT lymphomas. Haematologica. 2007;92(7):921–7.

    Article  PubMed  CAS  Google Scholar 

  100. Chanudet E, Ye H, Ferry J, et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol. 2009;217(3):420–30.

    Article  PubMed  CAS  Google Scholar 

  101. Zhou Y, Ye H, Martin-Subero JI, et al. Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without t(11;18)(q21;q21). Br J Haematol. 2006;133(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  102. Fukuhara N, Nakamura T, Nakagawa M, et al. Chromosomal imbalances are associated with outcome of Helicobacter pylori eradication in t(11;18)(q21;q21) negative gastric mucosa-associated lymphoid tissue lymphomas. Genes Chromosomes Cancer. 2007;46(8):784–90.

    Article  PubMed  CAS  Google Scholar 

  103. Krugmann J, Tzankov A, Dirnhofer S, et al. Unfavourable prognosis of patients with trisomy 18q21 detected by fluorescence in situ hybridisation in t(11;18) negative, surgically resected, gastrointestinal B cell lymphomas. J Clin Pathol. 2004;57:360–4.

    Article  PubMed  CAS  Google Scholar 

  104. Jens Krugmann AT, Stephan Dirnhofer, Falko Fend, Dominik Wolf, Reiner Siebert, Pensiri Probst, Martin Erdel Complete or partial trisomy 3 in gastro-intestinal MALT lymphomas co-occurs with aberrations at 18q21 and correlates with advanced disease stage: A study on 25 cases. World J Gastroenterol 2005;11(46):7384–5.

    Google Scholar 

  105. Hamoudi RA, Appert A, Ye H, et al. Differential expression of NF-kB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia. 2010;24(8):1487–97.

    Article  PubMed  CAS  Google Scholar 

  106. Dierlamm J, Pittaluga S, Wlodarska I, et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features [see comments]. Blood. 1996;87(1):299–307.

    PubMed  CAS  Google Scholar 

  107. Callet-Bauchu E, Baseggio L, Felman P, et al. Cytogenetic analysis delineates a spectrum of chromosomal changes that can distinguish non-MALT marginal zone B-cell lymphomas among mature B-cell entities: a description of 103 cases. Leukemia. 2005;19(10):1818–23.

    Article  PubMed  CAS  Google Scholar 

  108. Bentley G, Palutke M, Mohamed AN. Variant t(14;18) in malignant lymphoma: a report of seven cases. Cancer Genet Cytogenet. 2005;157(1):12–7.

    Article  PubMed  CAS  Google Scholar 

  109. Guo Y, Karube K, Kawano R, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63.

    Article  PubMed  CAS  Google Scholar 

  110. Impera L, Albano F, Lo Cunsolo C, et al. A novel fusion 5’AFF3/3’BCL2 originated from a t(2;18)(q11.2;q21.33) translocation in follicular lymphoma. Oncogene. 2008;27(47):6187–90.

    Article  PubMed  CAS  Google Scholar 

  111. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34.

    Article  PubMed  CAS  Google Scholar 

  112. Tagawa H, Karube K, Guo Y, et al. Trisomy 3 is a specific genomic aberration of t(14;18) negative follicular lymphoma. Leukemia. 2007;21(12):2549–51.

    Article  PubMed  CAS  Google Scholar 

  113. DE Horsman CJ, Pantzar T, Gascoyne RD. Analysis of secondary chromosomal alterations in 165 cases of follicular lymphoma with t(14;18). Genes Chromosomes Cancer. 2001;30(4):375–82.

    Article  PubMed  CAS  Google Scholar 

  114. Aamot H. MF, Holte H, Delabie J, Heim S. M-FISH cytogenetic analysis of non-Hodgkin lymphomas with t(14;18)(q32;q21) and add(1)(p36) as a secondary abnormality shows that the extra material often comes from chromosome arm 17q. Leuk Lymphoma. 2002;43(5):1051–6.

    PubMed  CAS  Google Scholar 

  115. d’Amore F, Chan E, Iqbal J, et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res. 2008;14(22):7180–7.

    Article  PubMed  CAS  Google Scholar 

  116. Hoglund M, Sehn L, Connors JM, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39(3):195–204.

    Article  PubMed  Google Scholar 

  117. Elenitoba-Johnson KSJ, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood. 1998;91(12):4677–85.

    PubMed  CAS  Google Scholar 

  118. Johnson NA, Al-Tourah A, Brown CJ, Connors JM, Gascoyne RD, Horsman DE. Prognostic significance of secondary cytogenetic alterations in follicular lymphomas. Genes Chromosomes Cancer. 2008;47(12):1038–48.

    Article  PubMed  CAS  Google Scholar 

  119. Höglund M, Sehn L, Connors JM, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39(3):195–204.

    Article  PubMed  Google Scholar 

  120. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61.

    Article  PubMed  CAS  Google Scholar 

  121. Cheung K-JJ, Shah SP, Steidl C, et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood. 2009;113(1):137–48.

    Article  PubMed  CAS  Google Scholar 

  122. Jardin F, Buchonnet G, Parmentier F, Contentin N, Leprêtre S, Lenain P, Picquenot JM, Laberge S, Bertrand P, Stamatoullas A, D’Anjou J, Tilly H, Bastard C. Follicle center lymphoma is associated with significantly elevated levels of BCL-6 expression among lymphoma subtypes, independent of chromosome 3q27 rearrangements. Leukemia. 2002;16(11):2318–25.

    Article  PubMed  CAS  Google Scholar 

  123. Ott G, Katzenberger T, Lohr A, et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood. 2002;99(10):3806–12.

    Article  PubMed  CAS  Google Scholar 

  124. Bosga-Bouwer AG, van Imhoff GW, Boonstra R, et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood. 2003;101(3):1149–54.

    Article  PubMed  CAS  Google Scholar 

  125. Karube K, Ying G, Tagawa H, et al. BCL6 gene amplification/3q27 gain is associated with unique clinicopathological characteristics among follicular lymphoma without BCL2 gene translocation. Mod Pathol. 2008;21(8):973–8.

    Article  PubMed  CAS  Google Scholar 

  126. Christie L, Kernohan N, Levison D, et al. C-MYC translocation in t(14;18) positive follicular lymphoma at presentation: An adverse prognostic indicator? Leuk Lymphoma. 2008;49(3):470–6.

    Article  PubMed  CAS  Google Scholar 

  127. Ladanyi M, Offit K, Chaganti R. Variant t(8;14) translocations in non-Burkitt’s non-Hodgkin’s lymphomas [letter; comment]. Blood. 1992;79(5):1377–9.

    PubMed  CAS  Google Scholar 

  128. Gu K, Chan WC, Hawley RC. Practical Detection of t(14;18)(IgH/BCL2) in Follicular Lymphoma. Arch Pathol Lab Med. 2008;132(8):1355–61.

    PubMed  CAS  Google Scholar 

  129. Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer Cytopathol. 2004;102(2):124–31.

    CAS  Google Scholar 

  130. Sun T, Nordberg ML, Cotelingam JD, Veillon DM, Ryder J. Fluorescence in situ hybridization: Method of choice for a definitive diagnosis of mantle cell lymphoma. Am J Hematol. 2003;74(1):78–84.

    Article  PubMed  Google Scholar 

  131. Belaud-Rotureau M-A, Parrens M, Dubus P, Garroste J-C, de Mascarel A, Merlio J-P. A Comparative Analysis of FISH, RT-PCR, PCR, and Immunohistochemistry for the Diagnosis of Mantle Cell Lymphomas. Mod Pathol. 2002;15(5):517–25.

    Article  PubMed  Google Scholar 

  132. Katzenberger T, Kienle D, Stilgenbauer S, et al. Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol. 2008;142(4):538–50.

    Article  PubMed  Google Scholar 

  133. Bjorck E, Landgren O, Schoumans J, Christensson B, Bjorkholm M, MacDonald AP, Nordenskjold M. Molecular cytogenetic approach to the diagnosis of splenic lymphoma: a case report of blastoid mantle cell lymphoma. Leuk Lymphoma. 2003;44:1229–34.

    Article  PubMed  Google Scholar 

  134. Ho AK, Hill S, Preobrazhensky SN, Miller ME, Chen Z, Bahler DW. Small B-cell neoplasms with typical mantle cell lymphoma immunophenotypes often include chronic lymphocytic leukemias. Am J Clin Pathol. 2009;131(1):27–32.

    Article  PubMed  Google Scholar 

  135. Maravelaki S, Burford A, Wotherspoon A, et al. Molecular cytogenetic study of a mantle cell lymphoma with a complex translocation involving the CCND1 (11q13) region. Cancer Genet Cytogenet. 2004;154(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  136. Mohamed AN, Ali W, Kopptich F, al Katib A. Banded chromosomes versus fluorescence in situ hybridization in the diagnosis of mantle cell lymphoma: a lesson from three cases. Cancer Genet Cytogenet. 2002;136(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  137. Aventín A, Nomdedéu J, Briones J, Espinosa I, Bordes R, Sierra J. Insertion of the CCND1 gene into the IgH locus in a case of leukaemic small cell mantle lymphoma with normal chromosomes 11 and 14. J Clin Pathol. 2003;56(10):798–800.

    Article  PubMed  Google Scholar 

  138. Espinet B, Salaverria I, Beà S, et al. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer. 2010;49(5):439–51.

    PubMed  CAS  Google Scholar 

  139. Aamot HV, Tjønnfjord GE, Delabie J, Heim S. Molecular cytogenetic analysis of leukemic mantle cell lymphoma with a cryptic t(11;14). Cancer Genet Cytogenet. 2006;165(2):172–5.

    Article  PubMed  CAS  Google Scholar 

  140. Gazzo S, Felman P, Berger F, Salles G, Magaud J, Callet-Bauchu E. Atypical cytogenetic presentation of t(11;14) in mantle cell lymphoma. Haematologica. 2005;90(12):1708–9.

    PubMed  CAS  Google Scholar 

  141. Wlodarska I, Meeus P, Stul M, et al. Variant t(2;11)(p11;q13) associated with the IgK-CCND1 rearrangement is a recurrent translocation in leukemic small-cell B-non-Hodgkin lymphoma. Leukemia. 2004;18(10):1705–10.

    Article  PubMed  CAS  Google Scholar 

  142. Au WY, Gascocyn R, Viswanatha DS, Connors JM, Klasa RJ, Horsman DE. Cytogenetic analysis in mantle cell lymphoma: a review of 214 cases. Leuk Lymphoma. 2002;43:783–91.

    Article  PubMed  Google Scholar 

  143. Hutter G, Scheubner M, Ott G, et al. Allelic genotyping reveals a hierarchy of genomic alterations in mantle cell lymphoma associated to cell proliferation. Ann Hematol. 2009;88(9):821–8.

    Article  PubMed  CAS  Google Scholar 

  144. Bertoni F, Conconi A, Cogliatti SB, Schmitz SF, Ghielmini M, Cerny T, Fey M, Pichert G, Bertolini F, Ponzoni M, Baldini L, Jones C, Auer R, Zucca E, Cavalli F, Cotter FE. Swiss Group for Clinical Cancer Research. Immunoglobulin heavy chain genes somatic hypermutations and chromosome 11q22-23 deletion in classic mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research. Br J Haematol. 2004;124:289–98.

    Article  PubMed  CAS  Google Scholar 

  145. Parry-Jones N, Matutes E, Morilla R, et al. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol. 2007;137(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  146. Monni O, Oinonen R, Elonen E, Franssila K, Teerenhovi L, Joensuu H, Knuutila S. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer. 1998;21:298–307.

    Article  PubMed  CAS  Google Scholar 

  147. Allen JE, Hough RE, Goepel JR, Bottomley S, Wilson GA, Alcock HE, Baird M, Lorigan PC, Vandenberghe EA, Hancock BW, Hammond DW. Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol. 2002;116:291–8.

    Article  PubMed  CAS  Google Scholar 

  148. Solenthaler M, Matutes E, Brito-Babapulle V, Morilla R, Catovsky D. p53 and mdm2 in mantle cell lymphoma in leukemic phase. Haematologica. 2002;87(11):1141–50.

    PubMed  CAS  Google Scholar 

  149. Woroniecka R, Grygalewicz B, Rygier J, Witkowska A, Rymkiewicz G, Jarosinska-Romejko J. Significance of chromosomal markers in the diagnosis of mantle cell lymphoma (MCL). J Appl Genet. 2002;43(545–553):545.

    PubMed  Google Scholar 

  150. Parrens M, Belaud-Rotureau M-A, Fitoussi O, et al. Blastoid and common variants of mantle cell lymphoma exhibit distinct immunophenotypic and interphase FISH features. Histopathology. 2006;48(4):353–62.

    Article  PubMed  CAS  Google Scholar 

  151. Khoury JD, Sen F, Abruzzo LV, Hayes K, Glassman A, Medeiros LJ. Cytogenetic findings in blastoid mantle cell lymphoma. Hum Pathol. 2003;34(10):1022–9.

    Article  PubMed  CAS  Google Scholar 

  152. Hao S, Sanger W, Onciu M, Lai R, Schlette EJ, Medeiros LJ. Mantle cell lymphoma with 8q24 chromosomal abnormalities: a report of 5 cases with blastoid features. Mod Pathol. 2000;15(12):1266–72.

    Article  Google Scholar 

  153. Vaishampayan UN, Mohamed AN, Dugan MC, Bloom RE, Palutke M. Blastic mantle cell lymphoma associated with Burkitt-type translocation and hypodiploidy. Br J Haematol. 2001;115(1):66–8.

    Article  PubMed  CAS  Google Scholar 

  154. Michaux L, Wlodarska I, Theate I, et al. Coexistence of BCL1/CCND1 and CMYC aberrations in blastoid mantle cell lymphoma: a rare finding associated with very poor outcome. Ann Hematol. 2004;83(9):578–83.

    Article  PubMed  CAS  Google Scholar 

  155. Felten CL, Stephenson C, Ortiz RO, Hertzberg L. Burkitt transformation of mantle cell lymphoma. Leuk Lymphoma. 2004;45:2143–7.

    Article  PubMed  CAS  Google Scholar 

  156. Oliveira FM, Tone LG, Simões BP, Rego EM, Araújo AG, Falcão RP. Blastoid mantle cell lymphoma with t(2;8) (p12;q24). Leuk Lymphoma. 2007;48(10):2079–82.

    Article  PubMed  CAS  Google Scholar 

  157. Nagy B, Lundan T, Larramendy ML, Aalto Y, Zhu Y, Niini T, Edgren H, Ferrer A, Vilpo J, Elonen E, Vettenranta K, Franssila K, Knuutila S. Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma. Br J Haematol. 2003;120:434–41.

    Article  PubMed  CAS  Google Scholar 

  158. Reddy K, Ansari-Lari M, Dipasquale B. Blastic mantle cell lymphoma with a Burkitt translocation. Leuk Lymphoma. 2008;49(4):740–50.

    Article  PubMed  CAS  Google Scholar 

  159. Orchard J, Garand R, Davis Z, et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101(12):4975–81.

    Article  PubMed  CAS  Google Scholar 

  160. Nodit L, Bahler DW, Jacobs SA, Locker J, Swerdlow SH. Indolent mantle cell lymphoma with nodal involvement and mutated immunoglobulin heavy chain genes. Hum Pathol. 2003;34(10):1030–4.

    Article  PubMed  CAS  Google Scholar 

  161. Lima M, Pinto L, Teixeira MDA, et al. Guess what: Chronic 13q14.3+/CD5-/CD23+ lymphocytic leukemia in blood and t(11;14)(q13;q32)+/CD5+/CD23- mantle cell lymphoma in lymph nodes! Cytometry. 2003;51B(1):41–4.

    Article  Google Scholar 

  162. Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.

    Article  PubMed  CAS  Google Scholar 

  163. Wlodarska I, Dierickx D, Vanhentenrijk V, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 2008;111(12):5683–90.

    Article  PubMed  CAS  Google Scholar 

  164. Stefancikova L, Moulis M, Fabian P, et al. Complex analysis of cyclin D1 expression in mantle cell lymphoma: two cyclin D1-negative cases detected. J Clin Pathol. 2009;62(10):948–50.

    Article  PubMed  CAS  Google Scholar 

  165. Herens C, Lambert F, Quintanilla-Martinez L, Bisig B, Deusings C, de Leval L. Cyclin D1-negative mantle cell lymphoma with cryptic t(12;14)(p13;q32) and cyclin D2 overexpression. Blood. 2008;111(3):1745–6.

    Article  PubMed  CAS  Google Scholar 

  166. Quintanilla-Martinez L, Slotta-Huspenina J, Koch I, et al. Differential diagnosis of cyclin D2+ mantle cell lymphoma based on fluorescence in situ hybridization and quantitative real-time-PCR. Haematologica. 2009;94(11):1595–8.

    Article  PubMed  CAS  Google Scholar 

  167. Sonoki T, Harder L, Horsman DE, et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood. 2001;98(9):2837–44.

    Article  PubMed  CAS  Google Scholar 

  168. Cigudosa JC, Parsa NZ, Louie DC, et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosomes Cancer. 1999;25(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  169. Rao PH, Houldsworth J, Dyomina K, et al. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood. 1998;92(1):234–40.

    PubMed  CAS  Google Scholar 

  170. Kramer MH, Hermans J, Wijburg E, et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood. 1998;92(9):3152–62.

    PubMed  CAS  Google Scholar 

  171. Barrans SL, Carter I, Owen RG, et al. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood. 2002;99(4):1136–43.

    Article  PubMed  CAS  Google Scholar 

  172. Barrans SL, Evans PAS, O’Connor SJM, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9(6):2133–9.

    PubMed  CAS  Google Scholar 

  173. Iqbal J, Sanger WG, Horsman DE, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–66.

    Article  PubMed  CAS  Google Scholar 

  174. Beà S, Colomo L, López-Guillermo A, et al. Clinicopathologic significance and prognostic value of chromosomal imbalances in diffuse large B-cell lymphomas. J Clin Oncol. 2004;22(17):3498–506.

    Article  PubMed  CAS  Google Scholar 

  175. Oudejans JJ, van Wieringen WN, Smeets SJ, et al. Identification of genes putatively involved in the pathogenesis of diffuse large B-cell lymphomas by integrative genomics. Genes Chromosomes Cancer. 2009;48(3):250–60.

    Article  PubMed  CAS  Google Scholar 

  176. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  PubMed  CAS  Google Scholar 

  177. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  178. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    Article  PubMed  CAS  Google Scholar 

  179. Fu K, Weisenburger DD, Choi WWL, et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol. 2008;26(28):4587–94.

    Article  PubMed  CAS  Google Scholar 

  180. Lenz G, Wright GW, Emre NCT, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad U S A. 2008;105(36):13520–5.

    Article  CAS  Google Scholar 

  181. Malumbres R, Chen J, Tibshirani R, et al. Paraffin-based 6-gene model predicts outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Blood. 2008;111(12):5509–14.

    Article  PubMed  CAS  Google Scholar 

  182. Ilić I, Mitrović Z, Aurer I, et al. Lack of prognostic significance of the germinal-center phenotype in diffuse large B-cell lymphoma patients treated with CHOP-like chemotherapy with and without rituximab. Int J Hematol. 2009;90(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  183. Sheth A, de Melo VAS, Szydlo R, Macdonald DH, Reid AG, Wagner SD. Specific patterns of chromosomal gains and losses associate with t(3;14), t(8;14), and t(14;18) in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2009;194(1):48–52.

    Article  PubMed  CAS  Google Scholar 

  184. Iqbal J, Neppalli VT, Wright G, et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(6):961–8.

    Article  PubMed  CAS  Google Scholar 

  185. Mounier N, Briere J, Gisselbrecht C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101(11):4279–84.

    Article  PubMed  CAS  Google Scholar 

  186. Barrans S, Crouch S, Smith A et al. Rearrangement of MYC Is Associated With Poor Prognosis in Patients With Diffuse Large B-Cell Lymphoma Treated in the Era of Rituximab. J Clin Oncol 2010:JCO.2009.26.3947.

    Google Scholar 

  187. Tagawa H, Suguro M, Tsuzuki S, et al. Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood. 2005;106(5):1770–7.

    Article  PubMed  CAS  Google Scholar 

  188. Houldsworth J, Olshen AB, Cattoretti G, et al. Relationship between REL amplification, REL function, and clinical and ­biologic features in diffuse large B-cell lymphomas. Blood. 2004;103(5):1862–8.

    Article  PubMed  CAS  Google Scholar 

  189. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105(5):1851–61.

    Article  PubMed  CAS  Google Scholar 

  190. Chen W, Houldsworth J, Olshen AB, et al. Array comparative genomic hybridization reveals genomic copy number changes associated with outcome in diffuse large B-cell lymphomas. Blood. 2006;107(6):2477–85.

    Article  PubMed  CAS  Google Scholar 

  191. Bea S, Zettl A, Wright G, et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood. 2005;106(9):3183–90.

    Article  PubMed  CAS  Google Scholar 

  192. Wlodarska I, Mecucci C, Stul M, et al. Fluorescence in situ hybridization identifies new chromosomal changes involving 3q27 in non-Hodgkin’s lymphomas with BCL6/LAZ3 rearrangement. Genes Chromosomes Cancer. 1995;14(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  193. Akasaka T, Ueda C, Kurata M, et al. Nonimmunoglobulin (non-Ig)/BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood. 2000;96(8):2907–9.

    PubMed  CAS  Google Scholar 

  194. De Paepe P, Achten R, Verhoef G, et al. Large cleaved and immunoblastic lymphoma may represent two distinct clinicopathologic entities within the group of diffuse large B-cell lymphomas. J Clin Oncol. 2005;23(28):7060–8.

    Article  PubMed  Google Scholar 

  195. Offit K, Lo Coco F, Louie DC, et al. Rearrangement of the bcl-6 gene as a prognostic marker in diffuse large-cell lymphoma. N Engl J Med. 1994;331(2):74–80.

    Article  PubMed  CAS  Google Scholar 

  196. Jerkeman M, Aman P, Cavallin-Stahl E, et al. Prognostic implications of BCL6 rearrangement in uniformly treated patients with diffuse large B-cell lymphoma–a Nordic Lymphoma Group study. Int J Oncol. 2002;20(1):161–5.

    PubMed  CAS  Google Scholar 

  197. Bastard C, Deweindt C, Kerckaert JP, et al. LAZ3 rearrangements in non-Hodgkin’s lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood. 1994;83(9):2423–7.

    PubMed  CAS  Google Scholar 

  198. Winter JN, Weller EA, Horning SJ, et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood. 2006;107(11):4207–13.

    Article  PubMed  CAS  Google Scholar 

  199. Huang JZ, Sanger WG, Greiner TC, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99(7):2285–90.

    Article  PubMed  CAS  Google Scholar 

  200. Obermann EC, Csato M, Dirnhofer S, Tzankov A. BCL2 gene aberration as an IPI-independent marker for poor outcome in non-germinal-centre diffuse large B cell lymphoma. J Clin Pathol. 2009;62(10):903–7.

    Article  PubMed  CAS  Google Scholar 

  201. Dierlamm J, Murga Penas EM, Bentink S, et al. Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression.subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica. 2008;93(5):688–96.

    Article  PubMed  CAS  Google Scholar 

  202. Jardin F, Jais J-P, Molina T-J, et al. Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood. 2010;116(7):1092–104.

    Article  PubMed  CAS  Google Scholar 

  203. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.

    Article  PubMed  CAS  Google Scholar 

  204. Seegmiller AC, Garcia R, Huang R, Maleki A, Karandikar NJ, Chen W. Simple karyotype and bcl-6 expression predict a diagnosis of Burkitt lymphoma and better survival in IG-MYC rearranged high-grade B-cell lymphomas. Mod Pathol. 2010;23(7):909–20.

    Article  PubMed  CAS  Google Scholar 

  205. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7.

    Article  PubMed  CAS  Google Scholar 

  206. Niitsu N, Okamoto M, Miura I, Hirano M. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia. 2009;23(4):777–83.

    Article  PubMed  CAS  Google Scholar 

  207. McClure RF, Remstein ED, Macon WR, et al. Adult B-cell lymphomas with burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. Am J Surg Pathol. 2005;29(12):1652–60.

    Article  PubMed  Google Scholar 

  208. Klapper W, Stoecklein H, Zeynalova S, et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B-cell lymphomas treated within randomized trials of the German High-Grade ­Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia. 2008;22(12):2226–9.

    Article  PubMed  CAS  Google Scholar 

  209. Johnson NA, Savage KJ, Ludkovski O, et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009;114(11):2273–9.

    Article  PubMed  CAS  Google Scholar 

  210. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.

    Article  PubMed  CAS  Google Scholar 

  211. Mead GM, Barrans SL, Qian W, et al. A prospective clinicopathologic study of dose-modified CODOX-M/IVAC in patients with sporadic Burkitt lymphoma defined using cytogenetic and immunophenotypic criteria (MRC/NCRI LY10 trial). Blood. 2008;112(6):2248–60.

    Article  PubMed  CAS  Google Scholar 

  212. Kanungo A, Medeiros LJ, Abruzzo LV, Lin P. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol. 2006;19(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  213. de Leval L, Harris NL, Lampertz S, Herens C. T-cell/histiocyte-rich large B-cell lymphoma associated with a near-tetraploid karyotype and complex genetic abnormalities. APMIS. 2006;114(6):474–8.

    Article  PubMed  Google Scholar 

  214. La Starza R, Aventin A, Falzetti D, et al. 14q  +  chromosome marker in a T-cell-rich B-cell lymphoma. J Pathol. 1996;178(2):227–31.

    Article  PubMed  Google Scholar 

  215. Stamatoullas A, Picquenot J-M, Dumesnil C, et al. Conventional cytogenetics of nodular lymphocyte-predominant Hodgkin’s lymphoma. Leukemia. 2007;21(9):2064–7.

    Article  PubMed  CAS  Google Scholar 

  216. Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161(5):1861–7.

    Article  PubMed  CAS  Google Scholar 

  217. Franke S, Wlodarska I, Maes B, et al. Lymphocyte predominance Hodgkin disease is characterized by recurrent genomic imbalances. Blood. 2001;97(6):1845–53.

    Article  PubMed  CAS  Google Scholar 

  218. Cady FM, O’Neill BP, Law ME, et al. Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol. 2008;26(29):4814–9.

    Article  PubMed  CAS  Google Scholar 

  219. Montesinos-Rongen M, Zuhlke-Jenisch R, Gesk S, et al. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the ­central nervous system. J Neuropathol Exp Neurol. 2002;61(10):926–33.

    PubMed  CAS  Google Scholar 

  220. Schwindt H, Akasaka T, Zuhlke-Jenisch R, et al. Chromosomal translocations fusing the BCL6 gene to different partner loci are recurrent in primary central nervous system lymphoma and may be associated with aberrant somatic hypermutation or defective class switch recombination. J Neuropathol Exp Neurol. 2006;65(8):776–82.

    Article  PubMed  CAS  Google Scholar 

  221. Montesinos-Rongen M, Akasaka T, Zuhlke-Jenisch R, et al. Molecular characterization of BCL6 breakpoints in primary diffuse large B-cell lymphomas of the central nervous system identifies GAPD as novel translocation partner. Brain Pathol (Zurich, Switzerland). 2003;13(4):534–8.

    Article  CAS  Google Scholar 

  222. Weber T, Weber RG, Kaulich K, et al. Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol (Zurich, Switzerland). 2000;10(1):73–84.

    Article  CAS  Google Scholar 

  223. Schwindt H, Vater I, Kreuz M, et al. Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia. 2009;23(10):1875–84.

    Article  PubMed  CAS  Google Scholar 

  224. Booman M, Douwes J, Glas AM, et al. Mechanisms and effects of loss of human leukocyte antigen class II expression in immune-privileged site-associated B-cell lymphoma. Clin Cancer Res. 2006;12(9):2698–705.

    Article  PubMed  CAS  Google Scholar 

  225. Booman M, Szuhai K, Rosenwald A, et al. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol. 2008;216(2):209–17.

    Article  PubMed  CAS  Google Scholar 

  226. Jordanova ES, Riemersma SA, Philippo K, Giphart-Gassler M, Schuuring E, Kluin PM. Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system. Genes Chromosomes Cancer. 2002;35(1):38–48.

    Article  PubMed  CAS  Google Scholar 

  227. Riemersma SA, Oudejans JJ, Vonk MJ, et al. High numbers of tumour-infiltrating activated cytotoxic T lymphocytes, and frequent loss of HLA class I and II expression, are features of aggressive B cell lymphomas of the brain and testis. J Pathol. 2005;206(3):328–36.

    Article  PubMed  CAS  Google Scholar 

  228. Rimsza LM, Roberts RA, Miller TP, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood. 2004;103(11):4251–8.

    Article  PubMed  CAS  Google Scholar 

  229. List AF, Spier CM, Miller TP, Grogan TM. Deficient tumor-infiltrating T-lymphocyte response in malignant lymphoma: relationship to HLA expression and host immunocompetence. Leukemia. 1993;7(3):398–403.

    PubMed  CAS  Google Scholar 

  230. Chu LC, Eberhart CG, Grossman SA, Herman JG. Epigenetic silencing of multiple genes in primary CNS lymphoma. Int J Cancer. 2006;119(10):2487–91.

    Article  PubMed  CAS  Google Scholar 

  231. Rickert CH, Dockhorn-Dworniczak B, Simon R, Paulus W. Chromosomal imbalances in primary lymphomas of the central nervous system. Am J Pathol. 1999;155(5):1445–51.

    Article  PubMed  CAS  Google Scholar 

  232. Courts C, Montesinos-Rongen M, Martin-Subero JI, et al. Transcriptional profiling of the nuclear factor-kappaB pathway identifies a subgroup of primary lymphoma of the central nervous system with low BCL10 expression. J Neuropathol Exp Neurol. 2007;66(3):230–7.

    Article  PubMed  CAS  Google Scholar 

  233. Nakamura M, Sakaki T, Hashimoto H, et al. Frequent alterations of the p14(ARF) and p16(INK4a) genes in primary central nervous system lymphomas. Cancer Res. 2001;61(17):6335–9.

    PubMed  CAS  Google Scholar 

  234. Cobbers JM, Wolter M, Reifenberger J, et al. Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol (Zurich, Switzerland). 1998;8(2):263–76.

    Article  CAS  Google Scholar 

  235. Hallermann C, Kaune KM, Siebert R, et al. Chromosomal aberration patterns differ in subtypes of primary cutaneous B cell lymphomas. J Invest Dermatol. 2004;122(6):1495–502.

    Article  PubMed  CAS  Google Scholar 

  236. Hallermann C, Kaune KM, Gesk S, et al. Molecular cytogenetic analysis of chromosomal breakpoints in the IGH, MYC, BCL6, and MALT1 gene loci in primary cutaneous B-cell lymphomas. J Invest Dermatol. 2004;123(1):213–9.

    Article  PubMed  CAS  Google Scholar 

  237. Giménez S, Costa C, Espinet B, et al. Comparative genomic hybridization analysis of cutaneous large B-cell lymphomas. Exp Dermatol. 2005;14(12):883–90.

    Article  PubMed  Google Scholar 

  238. Dijkman R, Tensen CP, Jordanova ES, et al. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma. J Clin Oncol. 2006;24(2):296–305.

    Article  PubMed  CAS  Google Scholar 

  239. Senff NJ, Zoutman WH, Vermeer MH, et al. Fine-mapping chromosomal loss at 9p21: correlation with prognosis in primary cutaneous diffuse large B-cell lymphoma, leg type. J Invest Dermatol. 2009;129(5):1149–55.

    Article  PubMed  CAS  Google Scholar 

  240. Bentz M, Barth TF, Brüderlein S, et al. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer. 2001;30(4):393–401.

    Article  PubMed  CAS  Google Scholar 

  241. Joos S, Otaño-Joos MI, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–8.

    PubMed  CAS  Google Scholar 

  242. Scarpa A, Taruscio D, Scardoni M, et al. Nonrandom chromosomal imbalances in primary mediastinal B-cell lymphoma detected by arbitrarily primed PCR fingerprinting. Genes Chromosomes Cancer. 1999;26(3):203–9.

    Article  PubMed  CAS  Google Scholar 

  243. Palanisamy N, Abou-Elella AA, Chaganti SR, et al. Similar patterns of genomic alterations characterize primary mediastinal large-B-cell lymphoma and diffuse large-B-cell lymphoma. Genes Chromosomes Cancer. 2002;33(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  244. Wessendorf S, Barth TFE, Viardot A, et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia. 2007;21(12):2463–9.

    Article  PubMed  CAS  Google Scholar 

  245. Kimm LR, de Leeuw RJ, Savage KJ, et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosomes Cancer. 2007;46(12):1090–7.

    Article  PubMed  CAS  Google Scholar 

  246. Weniger MA, Pulford K, Gesk S, et al. Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia. 2006;20(10):1880–2.

    Article  PubMed  CAS  Google Scholar 

  247. Weniger MA, Gesk S, Ehrlich S, et al. Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer. 2007;46(4):406–15.

    Article  PubMed  CAS  Google Scholar 

  248. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62.

    Article  PubMed  CAS  Google Scholar 

  249. Meier C, Hoeller S, Bourgau C, et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol. 2009;22(3):476–87.

    Article  PubMed  CAS  Google Scholar 

  250. Weniger MA, Melzner I, Menz CK, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25(18):2679–84.

    Article  PubMed  CAS  Google Scholar 

  251. Melzner I, Bucur AJ, Brüderlein S, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105(6):2535–42.

    Article  PubMed  CAS  Google Scholar 

  252. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    Article  PubMed  CAS  Google Scholar 

  253. Delsol G, Lamant L, Mariame B, et al. A New Subtype of Large B-Cell Lymphoma Expressing the ALK Kinase and Lacking the 2; 5 Translocation. Blood. 1997;89(5):1483–90.

    PubMed  CAS  Google Scholar 

  254. Onciu M, Behm FG, Downing JR, et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM-ALK fusion transcript: report of 2 cases. Blood. 2003;102(7):2642–4.

    Article  PubMed  CAS  Google Scholar 

  255. Van Roosbroeck K, Cools J, Dierickx D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95(3):509–13.

    Article  PubMed  CAS  Google Scholar 

  256. Adam P, Katzenberg T, Seeberger H, Gattenlöhner S, Wolf J, Steinlein C, Schmid M, Müller-Hermelink HK, Ott G. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol. 2003;27(11):1473–6.

    Article  PubMed  Google Scholar 

  257. Gascoyne RD, Lamant L, Martin-Subero JI, et al. ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood. 2003;102(7):2568–73.

    Article  PubMed  CAS  Google Scholar 

  258. De Paepe P, Baens M, van Krieken H, et al. ALK activation by the CLTC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood. 2003;102(7):2638–41.

    Article  PubMed  CAS  Google Scholar 

  259. Chikatsu N, Kojima H, Suzukawa K, et al. ALK+, CD30-, CD20- Large B-Cell Lymphoma Containing Anaplastic Lymphoma Kinase (ALK) Fused to Clathrin Heavy Chain Gene (CLTC). Mod Pathol. 2003;16(8):828–32.

    Article  PubMed  Google Scholar 

  260. McManus DT, Catherwood MA, Carey PD, Cuthbert RJG, Alexander HD. ALK-positive diffuse large B-cell lymphoma of the stomach associated with a clathrin-ALK rearrangement. Hum Pathol. 2004;35(10):1285–8.

    Article  PubMed  CAS  Google Scholar 

  261. Gesk S, Gascoyne RD, Schnitzer B, et al. ALK-positive diffuse large B-cell lymphoma with ALK-Clathrin fusion belongs to the spectrum of pediatric lymphomas. Leukemia. 2005;19(10):1839–40.

    Article  PubMed  CAS  Google Scholar 

  262. Isimbaldi G, Bandiera L, Amore ESG, et al. ALK-positive plasmablastic B-cell lymphoma with the Clathrin-ALK gene rearrangement. Pediatr Blood Cancer. 2006;46(3):390–0.

    Article  PubMed  Google Scholar 

  263. Boerma EG, Siebert R, Kluin PM, Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23(2):225–34.

    Article  PubMed  CAS  Google Scholar 

  264. Leucci E, Cocco M, Onnis A, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50.

    Article  PubMed  CAS  Google Scholar 

  265. Salaverria I, Zettl A, Beà S, et al. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica. 2008;93(9):1327–34.

    Article  PubMed  Google Scholar 

  266. Lones MA, Sanger WG, Le Beau MM, et al. Chromosome abnormalities may correlate with prognosis in Burkitt/Burkitt-like lymphomas of children and adolescents: a report from Children’s Cancer Group Study CCG-E08. J Pediatr Hematol Oncol. 2004;26(3):169–78.

    Article  PubMed  Google Scholar 

  267. Garcia JL, Hernandez JM, Gutierrez NC, et al. Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt’s lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia. 2003;17(10):2016–24.

    Article  PubMed  CAS  Google Scholar 

  268. Poirel HA, Cairo MS, Heerema NA, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–31.

    Article  PubMed  CAS  Google Scholar 

  269. Nelson M, Perkins SL, Dave BJ, et al. An increased frequency of 13q deletions detected by fluorescence in situ hybridization and its impact on survival in children and adolescents with Burkitt lymphoma: results from the Children’s Oncology Group study CCG-5961. Br J Haematol. 2010;148(4):600–10.

    Article  PubMed  Google Scholar 

  270. Au WY, Gascoyne RD, Viswanatha DS, et al. Concurrent chromosomal alterations at 3q27, 8q24 and 18q21 in B-cell lymphomas. Br J Haematol. 1999;105(2):437–40.

    Article  PubMed  CAS  Google Scholar 

  271. De Jong D, Voetdijk BM, Beverstock GC, van Ommen GJ, Willemze R, Kluin PM. Activation of the c-myc oncogene in a precursor-B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma. N Engl J Med. 1988;318(21):1373–8.

    Article  PubMed  Google Scholar 

  272. Snuderl M, Kolman OK, Chen Y-B, et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol. 2010;34(3):327–40.

    Article  PubMed  Google Scholar 

  273. Macpherson N, Lesack D, Klasa R, et al. Small noncleaved, non-Burkitt’s (Burkit-Like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol. 1999;17(5):1558–67.

    PubMed  CAS  Google Scholar 

  274. Pienkowska-Grela B, Rymkiewicz G, Grygalewicz B, et al. Partial trisomy 11, dup(11)(q23q13), as a defect characterizing lymphomas with Burkitt pathomorphology without MYC gene rearrangement. Med Oncol (Northwood, London, England). 2010;28(4):1589–95.

    Article  Google Scholar 

  275. Brito-Babapulle V, Pomfret M, Matutes E, Catovsky D. Cytogenetic studies on prolymphocytic leukemia II. T cell prolymphocytic leukemia. Blood. 1987;70(4):926–31.

    PubMed  CAS  Google Scholar 

  276. Zech L, Gahrton G, Hammarstrom L, et al. Inversion of chromosome 14 marks human T-cell chronic lymphocytic leukaemia. Nature. 1984;308(5962):858–60.

    Article  PubMed  CAS  Google Scholar 

  277. Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103(2):110–6.

    Article  PubMed  CAS  Google Scholar 

  278. Matutes E, Brito-Babapulle V, Swansbury J, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78(12):3269–74.

    PubMed  CAS  Google Scholar 

  279. Soulier J, Pierron G, Vecchione D, et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2001;31(3):248–54.

    Article  PubMed  CAS  Google Scholar 

  280. Stern MH, Soulier J, Rosenzwajg M, et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene. 1993;8(9):2475–83.

    PubMed  CAS  Google Scholar 

  281. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.

    PubMed  CAS  Google Scholar 

  282. Sorour A, Brito-Babapulle V, Smedley D, Yuille M, Catovsky D. Unusual breakpoint distribution of 8p abnormalities in T-prolymphocytic leukemia: a study with YACS mapping to 8p11-p12. Cancer Genet Cytogenet. 2000;121(2):128–32.

    Article  PubMed  CAS  Google Scholar 

  283. Stilgenbauer S, Schaffner C, Litterst A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3(10):1155–9.

    Article  PubMed  CAS  Google Scholar 

  284. Stoppa-Lyonnet D, Soulier J, Lauge A, et al. Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood. 1998;91(10):3920–6.

    PubMed  CAS  Google Scholar 

  285. Vorechovsky I, Luo L, Dyer MJ, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17(1):96–9.

    Article  PubMed  CAS  Google Scholar 

  286. Yuille MA, Coignet LJ, Abraham SM, et al. ATM is usually rearranged in T-cell prolymphocytic leukaemia. Oncogene. 1998;16(6):789–96.

    Article  PubMed  CAS  Google Scholar 

  287. Brito-Babapulle V, Baou M, Matutes E, Morilla R, Atkinson S, Catovsky D. Deletions of D13S25, D13S319 and RB-1 mapping to 13q14.3 in T-cell prolymphocytic leukaemia. Br J Haematol. 2001;114(2):327–32.

    Article  PubMed  CAS  Google Scholar 

  288. Brito-Babapulle V, Hamoudi R, Matutes E, et al. p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T-prolymphocytic leukaemia and Sezary syndrome. Br J Haematol. 2000;110(1):180–7.

    Article  PubMed  CAS  Google Scholar 

  289. Bug S, Durig J, Oyen F, et al. Recurrent loss, but lack of mutations, of the SMARCB1 tumor suppressor gene in T-cell prolymphocytic leukemia with TCL1A-TCRAD juxtaposition. Cancer Genet Cytogenet. 2009;192(1):44–7.

    Article  PubMed  CAS  Google Scholar 

  290. Durig J, Bug S, Klein-Hitpass L, et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia. 2007;21(10):2153–63.

    Article  PubMed  CAS  Google Scholar 

  291. Hetet G, Dastot H, Baens M, et al. Recurrent molecular deletion of the 12p13 region, centromeric to ETV6/TEL, in T-cell prolymphocytic leukemia. Hematol J. 2000;1(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  292. Salomon-Nguyen F, Brizard F, Le Coniat M, Radford I, Berger R, Brizard A. Abnormalities of the short arm of chromosome 12 in T cell prolymphocytic leukemia. Leukemia. 1998;12(6):972–5.

    Article  PubMed  CAS  Google Scholar 

  293. Costa D, Queralt R, Aymerich M, et al. High levels of chromosomal imbalances in typical and small-cell variants of T-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2003;147(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  294. Kawahara S, Sasaki M, Isobe Y, et al. Clinical analysis of 52 patients with granular lymphocyte proliferative disorder (GLPD) showed frequent anemia in indolent T-cell GLPD in Japan. Eur J Haematol. 2009;82(4):308–14.

    Article  PubMed  CAS  Google Scholar 

  295. Dhodapkar MV, Li CY, Lust JA, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood. 1994;84(5):1620–7.

    PubMed  CAS  Google Scholar 

  296. Man C, Au WY, Pang A, Kwong YL. Deletion 6q as a recurrent chromosomal aberration in T-cell large granular lymphocyte leukemia. Cancer Genet Cytogenet. 2002;139(1):71–4.

    Article  PubMed  CAS  Google Scholar 

  297. Wong KF, Chan JCW, Liu HSY, Man C, Kwong YL. Chromosomal abnormalities in T-cell large granular lymphocyte leukaemia: report of two cases and review of the literature. Br J Haematol. 2002;116(3):598–600.

    Article  PubMed  CAS  Google Scholar 

  298. Alekshun TJ, Tao J, Sokol L. Aggressive T-cell large granular lymphocyte leukemia: a case report and review of the literature. Am J Hematol. 2007;82(6):481–5.

    Article  PubMed  Google Scholar 

  299. Gentile TC, Uner AH, Hutchison RE, et al. CD3+, CD56+ aggressive variant of large granular lymphocyte leukemia. Blood. 1994;84(7):2315–21.

    PubMed  CAS  Google Scholar 

  300. Macon WR, Williams ME, Greer JP, et al. Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood. 1996;87(4):1474–83.

    PubMed  CAS  Google Scholar 

  301. Tordjman R, Macintyre E, Emile JF, et al. Aggressive acute CD3+, CD56- T cell large granular lymphocyte leukemia with two stages of maturation arrest. Leukemia. 1996;10(9):1514–9.

    PubMed  CAS  Google Scholar 

  302. Passetto Falcao R, Pinto Simoes B, Garcia AB, Fonseca BA, Terra Filho J. Aggressive variant of morphologically typical T large granular lymphocyte leukemia/lymphoma lacking NK cell markers. Acta Haematol. 2000;104(2–3):110–4.

    Article  PubMed  CAS  Google Scholar 

  303. Oshimi K, Yamada O, Kaneko T, et al. Laboratory findings and clinical courses of 33 patients with granular lymphocyte-proliferative disorders. Leukemia. 1993;7(6):782–8.

    PubMed  CAS  Google Scholar 

  304. Rabbani GR, Phyliky RL, Tefferi A. A long-term study of patients with chronic natural killer cell lymphocytosis. Br J Haematol. 1999;106(4):960–6.

    Article  PubMed  CAS  Google Scholar 

  305. Tefferi A, Li CY, Witzig TE, Dhodapkar MV, Okuno SH, Phyliky RL. Chronic natural killer cell lymphocytosis: a descriptive clinical study. Blood. 1994;84(8):2721–5.

    PubMed  CAS  Google Scholar 

  306. Ohno Y, Amakawa R, Fukuhara S, et al. Acute transformation of chronic large granular lymphocyte leukemia associated with additional chromosome abnormality. Cancer. 1989;64(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  307. Wong KF, Zhang YM, Chan JK. Cytogenetic abnormalities in natural killer cell lymphoma/leukaemia–is there a consistent pattern? Leuk Lymphoma. 1999;34(3–4):241–50.

    PubMed  CAS  Google Scholar 

  308. Yonescu R, Hristov AC, Ahmad A, Overby A, Thomas GH, Griffin CA. Cytogenetic characterization of natural killer cell leukemia. Cancer Genet Cytogenet. 2008;183(2):125–30.

    Article  PubMed  CAS  Google Scholar 

  309. Ryder J, Wang X, Bao L, Gross SA, Hua F, Irons RD. Aggressive natural killer cell leukemia: report of a Chinese series and review of the literature. Int J Hematol. 2007;85(1):18–25.

    Article  PubMed  CAS  Google Scholar 

  310. Suzuki R, Suzumiya J, Nakamura S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18(4):763–70.

    Article  PubMed  CAS  Google Scholar 

  311. Tien HF, Su IJ, Tang JL, et al. Clonal chromosomal abnormalities as direct evidence for clonality in nasal T/natural killer cell lymphomas. Br J Haematol. 1997;97(3):621–5.

    Article  PubMed  CAS  Google Scholar 

  312. Wong KF, Chan JK, Kwong YL. Identification of del(6)(q21q25) as a recurring chromosomal abnormality in putative NK cell lymphoma/leukaemia. Br J Haematol. 1997;98(4):922–6.

    Article  PubMed  CAS  Google Scholar 

  313. Wong N, Wong KF, Chan JK, Johnson PJ. Chromosomal translocations are common in natural killer-cell lymphoma/leukemia as shown by spectral karyotyping. Hum Pathol. 2000;31(6):771–4.

    Article  PubMed  CAS  Google Scholar 

  314. Siu LL, Wong KF, Chan JK, Kwong YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol. 1999;155(5):1419–25.

    Article  PubMed  CAS  Google Scholar 

  315. Siu LL, Chan V, Chan JK, Wong KF, Liang R, Kwong YL. Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol. 2000;157(6):1803–9.

    Article  PubMed  CAS  Google Scholar 

  316. Nakashima Y, Tagawa H, Suzuki R, et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer. 2005;44(3):247–55.

    Article  PubMed  CAS  Google Scholar 

  317. Tsukasaki K, Hermine O, Bazarbachi A, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27(3):453–9.

    Article  PubMed  Google Scholar 

  318. Chen C-Y, Yao M, Tang J-L, et al. Chromosomal abnormalities of 200 Chinese patients with non-Hodgkin’s lymphoma in Taiwan: with special reference to T-cell lymphoma. Ann Oncol. 2004;15(7):1091–6.

    Article  PubMed  Google Scholar 

  319. Itoyama T, Chaganti RS, Yamada Y, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97(11):3612–20.

    Article  PubMed  CAS  Google Scholar 

  320. Hatta Y, Yamada Y, Tomonaga M, Said JW, Miyosi I, Koeffler HP. Allelotype analysis of adult T-cell leukemia. Blood. 1998;92(6):2113–7.

    PubMed  CAS  Google Scholar 

  321. Kamada N, Sakurai M, Miyamoto K, et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 1992;52(6):1481–93.

    PubMed  CAS  Google Scholar 

  322. Haider S, Hayakawa K, Itoyama T, Sadamori N, Kurosawa N, Isobe M. TCR variable gene involvement in chromosome inversion between 14q11 and 14q24 in adult T-cell leukemia. J Hum Genet. 2006;51(4):326–34.

    Article  PubMed  CAS  Google Scholar 

  323. Tsukasaki K, Krebs J, Nagai K, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: ­correlation with clinical course. Blood. 2001;97(12):3875–81.

    Article  PubMed  CAS  Google Scholar 

  324. Ariyama Y, Mori T, Shinomiya T, et al. Chromosomal imbalances in adult T-cell leukemia revealed by comparative genomic hybridization: gains at 14q32 and 2p16-22 in cell lines. J Hum Genet. 1999;44(6):357–63.

    Article  PubMed  CAS  Google Scholar 

  325. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood. 2006;107(11):4500–7.

    Article  PubMed  CAS  Google Scholar 

  326. Takasaki Y, Yamada Y, Sugahara K, et al. Interruption of p16 gene expression in adult T-cell leukaemia/lymphoma: clinical correlation. Br J Haematol. 2003;122(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  327. Yamada Y, Hatta Y, Murata K, et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol. 1997;15(5):1778–85.

    PubMed  CAS  Google Scholar 

  328. Hatta Y, Hirama T, Miller CW, Yamada Y, Tomonaga M, Koeffler HP. Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. Blood. 1995;85(10):2699–704.

    PubMed  CAS  Google Scholar 

  329. Cesarman E, Chadburn A, Inghirami G, Gaidano G, Knowles DM. Structural and functional analysis of oncogenes and tumor suppressor genes in adult T-cell leukemia/lymphoma shows frequent p53 mutations. Blood. 1992;80(12):3205–16.

    PubMed  CAS  Google Scholar 

  330. Nishimura S, Asou N, Suzushima H, et al. p53 gene mutation and loss of heterozygosity are associated with increased risk of disease progression in adult T cell leukemia. Leukemia. 1995;9(4):598–604.

    PubMed  CAS  Google Scholar 

  331. Sakashita A, Hattori T, Miller CW, et al. Mutations of the p53 gene in adult T-cell leukemia. Blood. 1992;79(2):477–80.

    PubMed  CAS  Google Scholar 

  332. Tawara M, Hogerzeil SJ, Yamada Y, et al. Impact of p53 aberration on the progression of Adult T-cell Leukemia/Lymphoma. Cancer Lett. 2006;234(2):249–55.

    Article  PubMed  CAS  Google Scholar 

  333. Miyata T, Yonekura K, Utsunomiya A, Kanekura T, Nakamura S, Seto M. Cutaneous type adult T-cell leukemia/lymphoma is a characteristic subtype and includes erythema/papule and nodule/tumor subgroups. Int J Cancer. 2010;126(6):1521–8.

    PubMed  CAS  Google Scholar 

  334. Nakagawa M, Nakagawa-Oshiro A, Karnan S, et al. Array Comparative Genomic Hybridization Analysis of PTCL-U Reveals a Distinct Subgroup with Genetic Alterations Similar to Lymphoma-Type Adult T-Cell Leukemia/Lymphoma. Clin Cancer Res. 2009;15(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  335. Feldman AL, Law M, Grogg KL, et al. Incidence of TCR and TCL1 Gene Translocations and Isochromosome 7q in Peripheral T-Cell Lymphomas Using Fluorescence In Situ Hybridization. Am J Clin Pathol. 2008;130(2):178–85.

    Article  PubMed  Google Scholar 

  336. Ko YH, Choi KE, Han JH, Kim JM, Ree HJ. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46(2):85–91.

    Article  PubMed  CAS  Google Scholar 

  337. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.

    Article  PubMed  CAS  Google Scholar 

  338. Huang Y, de Reyniès A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.

    Article  PubMed  CAS  Google Scholar 

  339. Berti E, Recalcati S, Girgenti V, Fanoni D, Venegoni L, Vezzoli P. Cutaneous extranodal NK/T-cell lymphoma: a clinicopathologic study of five caucasian cases with array-based comparative genomic hybridization. Blood. 2010;116(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  340. Ott G, Katzenberger T, Siebert R, et al. Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosomes Cancer. 1998;22(2):114–21.

    Article  PubMed  CAS  Google Scholar 

  341. Zettl A, Ott G, Makulik A, et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol. 2002;161(5):1635–45.

    Article  PubMed  CAS  Google Scholar 

  342. Verkarre V, Romana S-P, Cellier C, et al. Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology. 2003;125(1):40–6.

    Article  PubMed  Google Scholar 

  343. Leich E, Haralambieva E, Zettl A, et al. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. J Pathol. 2007;213(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  344. Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology. 2007;132(5):1902–11.

    Article  PubMed  CAS  Google Scholar 

  345. Macon WR, Levy NB, Kurtin PJ, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphomas. Am J Surg Pathol. 2001;25(3):285–96.

    Article  PubMed  CAS  Google Scholar 

  346. Belhadj K, Reyes F, Farcet J-P, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–9.

    Article  PubMed  CAS  Google Scholar 

  347. Wang CC, Tien HF, Lin MT, et al. Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosomes Cancer. 1995;12(3):161–4.

    Article  PubMed  CAS  Google Scholar 

  348. Jonveaux P, Daniel MT, Martel V, Maarek O, Berger R. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia. 1996;10(9):1453–5.

    PubMed  CAS  Google Scholar 

  349. Shetty S, Mansoor A, Roland B. Ring chromosome 7 with amplification of 7q sequences in a pediatric case of hepatosplenic T-cell lymphoma. Cancer Genet Cytogenet. 2006;167(2):161–3.

    Article  PubMed  CAS  Google Scholar 

  350. Tamaska J, Adam E, Kozma A, et al. Hepatosplenic gammadelta T-cell lymphoma with ring chromosome 7, an isochromosome 7q equivalent clonal chromosomal aberration. Virchows Arch. 2006;449(4):479–83.

    Article  PubMed  Google Scholar 

  351. Alonsozana EL, Stamberg J, Kumar D, et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic gammadelta T cell lymphoma. Leukemia. 1997;11(8):1367–72.

    Article  PubMed  CAS  Google Scholar 

  352. Wlodarska I, Martin-Garcia N, Achten R, et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer. 2002;33(3):243–51.

    Article  PubMed  CAS  Google Scholar 

  353. Weidmann E, Hepatosplenic T. cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia. 2000;14(6):991–7.

    Article  PubMed  CAS  Google Scholar 

  354. Salhany KE, Feldman M, Peritt D, Nowell PC. Cytotoxic T-lymphocyte differentiation and cytogenetic alterations in gammadelta hepatosplenic T-cell lymphoma and posttransplant lymphoproliferative disorders. Blood. 1997;89(9):3490–1.

    PubMed  CAS  Google Scholar 

  355. Schlegelberger B, Himmler A, Godde E, Grote W, Feller A, Lennert K. Cytogenetic findings in peripheral T-cell lymphomas as a basis for distinguishing low-grade and high-grade lymphomas. Blood. 1994;83(2):505–11.

    PubMed  CAS  Google Scholar 

  356. Thangavelu M, Finn WG, Yelavarthi KK, et al. Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with Mycosis Fungoides/Sezary Syndrome. Blood. 1997;89(9):3371–7.

    PubMed  CAS  Google Scholar 

  357. Espinet B, Salido M, Pujol R, et al. Genetic characterization of Sezary’s syndrome by conventional cytogenetics and cross-species color banding fluorescent in situhybridization. Haematologica. 2004;89(2):165–73.

    PubMed  CAS  Google Scholar 

  358. Batista DAS, Vonderheid EC, Hawkins A, et al. Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sézary syndrome: Search for recurrent chromosome abnormalities. Genes Chromosomes Cancer. 2006;45(4):383–91.

    Article  PubMed  CAS  Google Scholar 

  359. Katona TM, O’Malley DP, Cheng L, Hiatt KM, Wang M, Anagnostou Jr JJ, Billings SD, Smoller BR. Loss of heterozygosity analysis identifies genetic abnormalities in mycosis fungoides and specific loci associated with disease progression. Am J Surg Pathol. 2007;31(10):1552–6.

    Article  PubMed  Google Scholar 

  360. van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  361. Vermeer MH, van Doorn R, Dijkman R, et al. Novel and highly recurrent chromosomal alterations in Sézary Syndrome. Cancer Res. 2008;68(8):2689–98.

    Article  PubMed  CAS  Google Scholar 

  362. Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker SJ. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood. 2003;101(4):1513–9.

    Article  PubMed  CAS  Google Scholar 

  363. Wain EM, Mitchell TJ, Russell-Jones R, Whittaker SJ. Fine mapping of chromosome 10q deletions in mycosis fungoides and sezary syndrome: Identification of two discrete regions of deletion at 10q23.33-24.1 and 10q24.33-25.1. Genes Chromosomes Cancer. 2005;42(2):184–92.

    Article  PubMed  CAS  Google Scholar 

  364. Barba G, Matteucci C, Girolomoni G, et al. Comparative genomic hybridization identifies 17q11.2 q12 duplication as an early event in cutaneous T-cell lymphomas. Cancer Genet Cytogenet. 2008;184(1):48–51.

    Article  PubMed  CAS  Google Scholar 

  365. Utikal J, Poenitz N, Gratchev A, et al. Additional Her 2/neu gene copies in patients with Sézary syndrome. Leuk Res. 2006;30(6):755–60.

    Article  PubMed  CAS  Google Scholar 

  366. Karenko L, Hahtola S, Päivinen S, et al. Primary cutaneous T-cell lymphomas show a deletion or translocation affecting NAV3, the human UNC-53 homologue. Cancer Res. 2005;65(18):8101–10.

    Article  PubMed  CAS  Google Scholar 

  367. Marty M, Prochazkova M, Laharanne E, et al. Primary cutaneous T-cell lymphomas do not show specific NAV3 gene deletion or translocation. J Invest Dermatol. 2008;128(10):2458–66.

    Article  PubMed  CAS  Google Scholar 

  368. Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141(4):461–9.

    Article  PubMed  CAS  Google Scholar 

  369. Hartmann S, Gesk S, Scholtysik R, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not ­otherwise specified, identifies a subgroup with chromosomal ­aberrations affecting the REL locus. Br J Haematol. 2010;148(3):402–12.

    Article  PubMed  Google Scholar 

  370. Zettl A, Rudiger T, Konrad M-A, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol. 2004;164(5):1837–48.

    Article  PubMed  CAS  Google Scholar 

  371. Nagel S, Leich E, Quentmeier H, et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia. 2007;22(2):387–92.

    Article  PubMed  CAS  Google Scholar 

  372. Fujiwara SI, Yamashita Y, Nakamura N, et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia. 2008;22(10):1891–8.

    Article  PubMed  CAS  Google Scholar 

  373. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2005;20(2):313–8.

    Article  CAS  Google Scholar 

  374. Feldman AL, Sun DX, Law ME, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 2008;22(6):1139–43.

    Article  PubMed  CAS  Google Scholar 

  375. Huang Y, Moreau A, Dupuis J, Streubel B, Petit B, Le Gouill S, Martin-Garcia N, Copie-Bergman C, Gaillard F, Qubaja M, Fabiani B, Roncador G, Haioun C, Delfau-Larue MH, Marafioti T, Chott A, Gaulard P. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.

    Article  PubMed  Google Scholar 

  376. Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia. 2008;23(3):574–80.

    Article  PubMed  CAS  Google Scholar 

  377. Kim K-E, Woo K-S, Kim K-H, et al. Peripheral T-cell lymphoma initially suspected with a single lymphoid aggregate and t(4;16)(q26;p13.3) on bone marrow. Leuk Res. 2009;33(1):188–91.

    Article  PubMed  CAS  Google Scholar 

  378. Mathas S, Johrens K, Joos S, et al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood. 2005;106(13):4287–93.

    Article  PubMed  CAS  Google Scholar 

  379. Almire C, Bertrand P, Ruminy P, et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer. 2007;46(11):1011–8.

    Article  PubMed  CAS  Google Scholar 

  380. Lepretre S, Buchonnet G, Stamatoullas A, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  381. Thorns C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: A matrix-based CGH approach. Genes Chromosomes Cancer. 2007;46(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  382. Schlegelberger B, Zwingers T, Hohenadel K, et al. Significance of cytogenetic findings for the clinical outcome in patients with T-cell lymphoma of angioimmunoblastic lymphadenopathy type. J Clin Oncol. 1996;14(2):593–9.

    PubMed  CAS  Google Scholar 

  383. Gesk S, Martin-Subero JI, Harder L, et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia. 2003;17(4):738–45.

    Article  PubMed  CAS  Google Scholar 

  384. Morris S, Kirstein M, Valentine M, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.

    Article  PubMed  CAS  Google Scholar 

  385. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A New Fusion Gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088–95.

    PubMed  CAS  Google Scholar 

  386. Trinei M, Lanfrancone L, Campo E, et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a Case of ALK-positive anaplastic large cell lymphoma. Cancer Res. 2000;60(4):793–8.

    PubMed  CAS  Google Scholar 

  387. Meech SJ, McGavran L, Odom LF, et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4-anaplastic lymphoma kinase gene fusion. Blood. 2001;98(4):1209–16.

    Article  PubMed  CAS  Google Scholar 

  388. Hernandez L, Pinyol M, Hernandez S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 1999;94(9):3265–8.

    PubMed  CAS  Google Scholar 

  389. Hernandez L, Bea S, Bellosillo B, et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALKXL chimeric gene with transforming activity. Am J Pathol. 2002;160(4):1487–94.

    Article  PubMed  CAS  Google Scholar 

  390. Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C, Delsol G, Mason D, Campo E. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest. 2001;81(3):419–26.

    Article  PubMed  CAS  Google Scholar 

  391. Touriol C, Greenland C, Lamant L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood. 2000;95(10):3204–7.

    PubMed  CAS  Google Scholar 

  392. Lamant L, Gascoyne RD, Duplantier MM, et al. Non-muscle myosin heavy chain (MYH9): A new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer. 2003;37(4):427–32.

    Article  PubMed  CAS  Google Scholar 

  393. Lones MA, Heerema NA, Le Beau MM, et al. Complex secondary chromosome abnormalities in advanced stage anaplastic large cell lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2006;171(2):89–96.

    Article  PubMed  CAS  Google Scholar 

  394. Monaco S, Tsao L, Murty VV, et al. Pediatric ALK  +  anaplastic large cell lymphoma with t(3;8)(q26.2;q24) translocation and c-myc rearrangement terminating in a leukemic phase. Am J Hematol. 2007;82(1):59–64.

    Article  PubMed  Google Scholar 

  395. Youssif C, Goldenbogen J, Hamoudi R, et al. Genomic profiling of pediatric ALK-positive anaplastic large cell lymphoma: A Children’s Cancer and Leukaemia Group Study. Genes Chromosomes Cancer. 2009;48(11):1018–26.

    Article  PubMed  CAS  Google Scholar 

  396. Salaverria I, Beà S, Lopez-Guillermo A, et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140(5):516–26.

    Article  PubMed  Google Scholar 

  397. Kansal R, Sait SNJ, Block AW, et al. Extra copies of chromosome 2 are a recurring aberration in ALK-negative lymphomas with anaplastic morphology. Mod Pathol. 2004;18(2):235–43.

    Article  CAS  Google Scholar 

  398. Pedersen RK, Sorensen AG, Pedersen NT, Schmidt KG, Kerndrup GB. Chromosome aberrations in adult Hodgkin disease in a Danish population-based study. Cancer Genet Cytogenet. 1999;110(2):128–32.

    Article  PubMed  CAS  Google Scholar 

  399. Tilly H, Bastard C, Delastre T, et al. Cytogenetic studies in untreated Hodgkin’s disease. Blood. 1991;77(6):1298–304.

    PubMed  CAS  Google Scholar 

  400. Dohner H, Bloomfield CD, Frizzera G, Frestedt J, Arthur DC. Recurring chromosome abnormalities in Hodgkin’s disease. Genes Chromosomes Cancer. 1992;5(4):392–8.

    Article  PubMed  CAS  Google Scholar 

  401. Falzetti D, Crescenzi B, Matteuci C, et al. Genomic instability and recurrent breakpoints are main cytogenetic findings in Hodgkin’s disease. Haematologica. 1999;84(4):298–305.

    PubMed  CAS  Google Scholar 

  402. Ladanyi M, Parsa NZ, Offit K, Wachtel MS, Filippa DA, Jhanwar SC. Clonal cytogenetic abnormalities in Hodgkin’s disease. Genes Chromosomes Cancer. 1991;3(4):294–9.

    Article  PubMed  CAS  Google Scholar 

  403. Schlegelberger B, Weber-Matthiesen K, Himmler A, et al. Cytogenetic findings and results of combined immunophenotyping and karyotyping in Hodgkin’s disease. Leukemia. 1994;8(1):72–80.

    PubMed  CAS  Google Scholar 

  404. Schouten HC, Sanger WG, Duggan M, Weisenburger DD, MacLennan KA, Armitage JO. Chromosomal abnormalities in Hodgkin’s disease. Blood. 1989;73(8):2149–54.

    PubMed  CAS  Google Scholar 

  405. Thangavelu M, Le Beau MM. Chromosomal abnormalities in Hodgkin’s disease. Hematol Oncol Clin North Am. 1989;3(2):221–36.

    PubMed  CAS  Google Scholar 

  406. Weber-Matthiesen K, Winkemann M, Muller-Hermelink A, Schlegelberger B, Grote W. Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to the characterization of tumor cells. J Histochem Cytochem. 1992;40(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  407. Weber-Matthiesen K, Deerberg J, Poetsch M, Grote W, Schlegelberger B. Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed-Sternberg cells in 100 % of analyzed cases of Hodgkin’s disease. Blood. 1995;86(4):1464–8.

    PubMed  CAS  Google Scholar 

  408. Ohshima K, Ishiguro M, Ohgami A, et al. Genetic analysis of sorted Hodgkin and Reed-Sternberg cells using comparative genomic hybridization. Int J Cancer. 1999;82(2):250–5.

    Article  PubMed  CAS  Google Scholar 

  409. Joos S, Kupper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–52.

    PubMed  CAS  Google Scholar 

  410. Joos S, Küpper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–52.

    PubMed  CAS  Google Scholar 

  411. Martin-Subero JI, Gesk S, Harder L, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7.

    Article  PubMed  CAS  Google Scholar 

  412. Kupper M, Joos S, von Bonin F, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol. 2001;112(3):768–75.

    Article  PubMed  CAS  Google Scholar 

  413. Joos S, Granzow M, Holtgreve-Grez H, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer. 2003;103(4):489–95.

    Article  PubMed  CAS  Google Scholar 

  414. Chui DT, Hammond D, Baird M, Shield L, Jackson R, Jarrett RF. Classical Hodgkin lymphoma is associated with frequent gains of 17q. Genes Chromosomes Cancer. 2003;38(2):126–36.

    Article  PubMed  CAS  Google Scholar 

  415. Martin-Subero JI, Wlodarska I, Bastard C, et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108(1):401–2. author reply 2–3.

    Article  PubMed  CAS  Google Scholar 

  416. Poppema S, Kaleta J, Hepperle B. Chromosomal abnormalities in patients with Hodgkin’s disease: evidence for frequent involvement of the 14q chromosomal region but infrequent bcl-2 gene rearrangement in Reed-Sternberg cells. J Natl Cancer Inst. 1992;84(23):1789–93.

    Article  PubMed  CAS  Google Scholar 

  417. Martin-Subero JI, Klapper W, Sotnikova A, et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res. 2006;66(21):10332–8.

    Article  PubMed  CAS  Google Scholar 

  418. Hartmann S, Martin-Subero JI, Gesk S, et al. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica. 2008;93(9):1318–26.

    Article  PubMed  CAS  Google Scholar 

  419. Steidl C, Telenius A, Shah SP, et al. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116(3):418–27.

    Article  PubMed  CAS  Google Scholar 

  420. Hansmann ML, Godde-Salz E, Hui PK, Muller-Hermelink HK, Lennert K. Cytogenetic findings in nodular paragranuloma (Hodgkin’s disease with lymphocytic predominance; nodular) and in progressively transformed germinal centers. Cancer Genet Cytogenet. 1986;21(4):319–25.

    Article  PubMed  CAS  Google Scholar 

  421. Parsa NZ, Gaidano G, Mukherjee AB, et al. Cytogenetic and molecular analysis of 6q deletions in Burkitt’s lymphoma cell lines. Genes Chromosomes Cancer. 1994;9(1):13–8.

    Article  PubMed  CAS  Google Scholar 

  422. Reeves BR, Nash R, Lawler SD, Fisher C, Treleaven JG, Wiltshaw E. Serial cytogenetic studies showing persistence of original clone in Hodgkin’s disease. Cancer Genet Cytogenet. 1990;50(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  423. Slavutsky I, de Vinuesa ML, Estevez ME, Sen L, de Salum SB. Cytogenetic and immunologic phenotype findings in Hodgkin’s disease. Cancer Genet Cytogenet. 1985;16(2):123–30.

    Article  PubMed  CAS  Google Scholar 

  424. Wlodarska I, Nooyen P, Maes B, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101(2):706–10.

    Article  PubMed  CAS  Google Scholar 

  425. Renné C, Martín-Subero JI, Hansmann M-L, Siebert R. Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn. 2005;7(3):352–6.

    Article  PubMed  Google Scholar 

  426. Wlodarska I, Stul M, De Wolf-Peeters C, Hagemeijer A. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89(8):965–72.

    PubMed  CAS  Google Scholar 

  427. Schraders M, Pfundt R, Straatman HMP, et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood. 2005;105(4):1686–93.

    Article  PubMed  CAS  Google Scholar 

  428. Kawamata N, Ogawa S, Gueller S, et al. Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Exp Hematol. 2009;37(8):937–46.

    Article  PubMed  CAS  Google Scholar 

  429. Mao X, Lillington D, Scarisbrick JJ, et al. Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides. Br J Dermatol. 2002;147(3):464–75.

    Article  PubMed  CAS  Google Scholar 

  430. Prochazkova M, Chevret E, Mainhaguiet G, et al. Common chromosomal abnormalities in mycosis fungoides transformation. Genes Chromosomes Cancer. 2007;46(9):828–38.

    Article  PubMed  CAS  Google Scholar 

  431. Caprini E, Cristofoletti C, Arcelli D, et al. Identification of key regions and genes important in the pathogenesis of Sézary Syndrome by combining genomic and expression microarrays. Cancer Res. 2009;69(21):8438–46.

    Article  PubMed  CAS  Google Scholar 

  432. Mao X, McElwaine S. Functional copy number changes in Sézary syndrome: toward an integrated molecular cytogenetic map III. Cancer Genet Cytogenet. 2008;185(2):86–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Victorian Cancer Agency. We thank Bruce Mercer and Adrian Zordan for assistance with the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan Wall M.B.B.S., Ph.D., F.R.A.C.P., F.R.C.P.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wall, M., Campbell, L.J. (2013). Cytogenetics of Lymphomas. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_44

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics