Skip to main content

Fractals in Physiology and Medicine

  • Chapter
  • First Online:
Handbook of Systems and Complexity in Health

Abstract

Calculus is a method of reasoning by computation of symbols and in medicine this has traditionally followed the path laid out by the physics of the nineteenth and twentieth century, with its smooth continuous functions and differential equations to make predictions. In the latter part of the twentieth century physical scientists began to look in earnest at complex phenomena and discovered to their surprise that the analytic functions they had touted for so long were not adequate for characterising the variations in any but the simplest of processes. This particular failing was discussed from a statistics perspective in an earlier chapter. It is now time to squarely face the general limitations of the traditional modelling techniques in medicine and address a calculus of medicine that is able to incorporate nonlinearity into its descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     z n+1  =  z n 2  +  c, where z n and c are complex numbers, z 0  =  0, and c is a point on the plain. The formula is iterated until |z n | (the magnitude of z) is greater than or equal to the bailout value 2.

References

  1. Weibel ER. Fractal geometry: a design principle for living organisms. Am J Physiol. 1991;261(6):L361–9.

    PubMed  CAS  Google Scholar 

  2. Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman and Company; 1982.

    Google Scholar 

  3. West BJ. Fractal physiology and the fractional calculus: a perspective. Front Physiol. 2010;1:12.

    PubMed  Google Scholar 

  4. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal physiology. New York: Oxford University Press; 1994.

    Google Scholar 

  5. Beran J. Statistics for long-memory processes. New York: Chapman & Hall; 1994.

    Google Scholar 

  6. Schottky W. Uber spontane Stromschwaukungen in verschiedenen Elektrizitattslei-tern. Ann Phys. 1918;362:541–67.

    Article  Google Scholar 

  7. West BJ, Bologna M, Grigolini P. Maximizing information exchange between complex networks. Phys Rep. 2008;468:1–99.

    Article  Google Scholar 

  8. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heat rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81. and references cited therein.

    Article  Google Scholar 

  9. Alvarez-Ramirez J, Ibarra-Valdez C, Rodriguez E, Dagdug E. 1/f Noise structures in Pollocks’s drip paintings. Phys A. 2008;387:281–95.

    Article  Google Scholar 

  10. Grigolini P, Aquino G, Bologna M, Lukovic M, West BJ. A theory of 1/f noise in human cognition. Phys A. 2009;388:4192–204.

    Article  Google Scholar 

  11. Gilden DL. Cognitive emissions of 1/f noise. Psych Rev. 2001;108:33–56.

    Article  CAS  Google Scholar 

  12. Van Orden GC, Holden JG, Turvey MT. Human cognition and 1/f scaling. J Exp Psychol Gen. 2005;134:117–23.

    Article  PubMed  Google Scholar 

  13. Kello CT, Beltz C, Holden JG, Van Orden GC. The emergent coordination of cognitive function. J Exp Psychol Gen. 2007;136:551–68.

    Article  PubMed  Google Scholar 

  14. Liebovitch LS, Krekora P. The physical basis of ion channel kinetics: the importance of dynamics. In: Layton HE, Weinstein AM, editors. Institute for Mathematics and its Applications Volumes in Mathematics and its Applications, Membrane Transport and Renal Physiology, vol. 129. New York: Springer; 2002. p. 27–52.

    Google Scholar 

  15. Roy S, Mitra I, Llinas R. Non-Markovian noise mediated through anomalous diffusion with ion channels. Phys Rev E. 2008;78:041920.

    Article  Google Scholar 

  16. Das M, Gebber GL, Bauman SM, Lewis CD. Fractal properties of sympathetic nerve discharges. J Neurophysiol. 2003;89:833–40.

    Article  PubMed  Google Scholar 

  17. West BJ. Where medicine went wrong; rediscovering the path to complexity. Singapore: World Scientific; 2006.

    Google Scholar 

  18. Goldberger A. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996;347:1312–4.

    Article  PubMed  CAS  Google Scholar 

  19. Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220(4):401–14.

    Article  PubMed  CAS  Google Scholar 

  20. West BJ, Bargava V, Goldberger AL. Beyond the principle of similitude: renormalization in the bronchial tree. J Appl Physiol. 1986;60:1089–98.

    PubMed  CAS  Google Scholar 

  21. Nelson TR, West BJ, Goldberger AL. The fractal lung: universal and species-related scaling patterns. Experientia. 1990;46:251–4.

    Article  PubMed  CAS  Google Scholar 

  22. Goldberger AL, Bhargava V, West BJ, Mandell AJ. On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys J. 1985;48(3):525–8.

    Article  PubMed  CAS  Google Scholar 

  23. Murray CD. The physiological principle of minimum work. I. The vascular system and the cost of blood. Proc Natl Acad Sci USA. 1926;12:207–14.

    Article  PubMed  CAS  Google Scholar 

  24. Kassab GS. Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol. 2006;290(2):H894–903.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Y, Kassab GS, Molloi S. On the design of the coronary arterial tree: a generalization of Murray’s law. J Phys Med Biol. 1999;44(12):2929–45.

    Article  CAS  Google Scholar 

  26. Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging. 2002;23(1):1–11.

    Article  PubMed  Google Scholar 

  27. Lipsitz L, Goldberger A. Loss of ‘complexity’ and aging. potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.

    Article  PubMed  CAS  Google Scholar 

  28. Scheibel AB. Falls, motor dysfunction, and correlative neurohistologic changes in the elderly. Clin Geriatr Med. 1985;1(3):671–6.

    PubMed  CAS  Google Scholar 

  29. Mosekilde L. Age-related changes in vertebral trabecular bone architecture - assessed by a new method. Bone. 1988;9(4):247–50.

    Article  PubMed  CAS  Google Scholar 

  30. Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996;271(4):R1078–84.

    PubMed  CAS  Google Scholar 

  31. Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. Aging and the complexity of cardiovascular dynamics. Biophys J. 1991;59(4):915–49.

    Article  Google Scholar 

  32. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol. 1997;82(1):262–9.

    PubMed  CAS  Google Scholar 

  33. Greenspan SL, Klibanski A, Rowe JW, Elahi D. Age-related alterations in pulsatile secretion of TSH: role of dopaminergic regulation. Am J Physiol. 1991;260(3):E486–91.

    PubMed  CAS  Google Scholar 

  34. Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD. Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci. 1996;93(24):14100–5.

    Article  PubMed  CAS  Google Scholar 

  35. Roelfsema F, Pincus SM, Veldhuis JD. Patients with Cushing’s disease secrete adrenocorticotropin and cortisol jointly more asynchronously than healthy subjects. J Clin Endocrinol Metab. 1998;83(2):688–92.

    Article  PubMed  CAS  Google Scholar 

  36. Siragy HM, Vieweg WV, Pincus S, Veldhuis JD. Increased disorderliness and amplified basal and pulsatile aldosterone secretion in patients with primary aldosteronism. J Clin Endocrinol Metab. 1995;80(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  37. Hartman ML, Pincus SM, Johnson ML, Matthews DH, Faunt LM, Vance ML, et al. Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release. J Clin Invest. 1994;94(3):1277–88.

    Article  PubMed  CAS  Google Scholar 

  38. Frolkis VV, Bezrukov VV. Aging of the central nervous system. Interdiscip Top Gerontol. 1979;16:87–9.

    Google Scholar 

  39. Mader S. Hearing impairment in elderly persons. J Am Geriatr Soc. 1984;2(7):548–53.

    Google Scholar 

  40. Scafetta N, Griffin L, West BJ. Holder exponent spectra for human gait. Phys A. 2003;328:561–83.

    Article  Google Scholar 

  41. West BJ, Scafetta N. Nonlinear dynamical model of human gait. Phys Rev E. 2003;67:051917-1.

    Article  Google Scholar 

  42. Goldberger AL. Fractal mechanisms in the electrophysiology of the heart. IEEE Eng Med Biol Mag. 1992;11(2):47–52.

    Article  PubMed  CAS  Google Scholar 

  43. Jian-Jun Z, Xin-Bao N, Xiao-Dong Y, Fang-Zhen H, Cheng-Yu H. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases. Chin Phys B. 2008;17:852.

    Article  Google Scholar 

  44. Scafetta N, Moon RE, West BJ. Fractal response of physiological signals to stress conditions, environmental changes and neurodegenerative diseases. Complexity. 2005;12:13–7.

    Google Scholar 

  45. Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82.

    Article  PubMed  CAS  Google Scholar 

  46. Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M. The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes. 2008;1:3–11.

    PubMed  CAS  Google Scholar 

  47. Katerndahl DA. Power laws in covariability of anxiety and depression among newly diagnosed patients with major depressive episode, panic disorder and controls. J Eval Clin Pract. 2009;15(3):565–70.

    Article  PubMed  Google Scholar 

  48. Gottschalk A, Bauer MS, Whybrow PC. Evidence of chaotic mood variation in bipolar disorder. Arch Gen Psychiatry. 1995;52(11):947–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim P. Sturmberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sturmberg, J.P., West, B.J. (2013). Fractals in Physiology and Medicine. In: Sturmberg, J., Martin, C. (eds) Handbook of Systems and Complexity in Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4998-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4998-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4997-3

  • Online ISBN: 978-1-4614-4998-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics