Skip to main content

Abstract

Tacitly we all use models all the time to help us understand and operate in the world around us. Modelling is a formal approach to understanding the real world through a simplified external and explicit representation of a mental model which can be manipulated and tested, before being implemented back into the real world. Mikulecky described the underlying mental processes as summarised in Fig. 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Some modelling methods are explained in greater detail at: http://www.systemswiki.org/index.php?title=Simulation_Methods.

  2. 2.

     All variable names appear in italic.

  3. 3.

     “+” sign next to the arrow indicates that the change in the variable at the tail of the arrow results in a change of the variable at the head of the arrow in the same direction.

  4. 4.

     Again “+” sign as the change occurs in the same direction.

  5. 5.

     Here we have a “−“ sign as the change will result in a change in the opposite direction.

  6. 6.

    Videocast/Podcast at http://videocast.nih.gov/Summary.asp?file=13712.

  7. 7.

     Interested readers are referred to the publications by Ceglowski et al. [14].

  8. 8.

    For a brief introduction and references see

    http://www.systemswiki.org/index.php?title=System_Dynamics; http://www.systemswiki.org/index.php?title=System_Dynamics_Methodology.

  9. 9.

     More detail of the model is available online at http://insightmaker.com/insight/1003.

  10. 10.

     More detail of the model is available online at http://insightmaker.com/insight/323.

  11. 11.

     This section is taken from unpublished work of my NZ colleague David Rees and Ahmad Azars’s papers and conference presentations (GM).

  12. 12.

     More detail of the model is available online at http://insightmaker.com/insight/318.

  13. 13.

    An unfolding of the arguments in the paper and link to the Insight is available on the Systemwiki website.

References

  1. Sturmberg JP. The foundations of primary care. Daring to be different. Oxford, San Francisco: Radcliffe Medical Press; 2007.

    Google Scholar 

  2. Pidd M. Tools for thinking: modelling in management science. 3rd ed. Chichester, UK: Wiley; 2010.

    Google Scholar 

  3. Frigg R, Hartmann S. Models in science: Stanford Encyclopedia of Philosophy 2012, http://plato.stanford.edu/entries/models-science/#Con.

  4. Rosenblueth A, Wiener N. The role of models in science. Philos Sci. 1945;12(4):316–21.

    Article  Google Scholar 

  5. Meadows DH, Wright D. Thinking in systems: a primer. White River Junction, VT: Chelsea Green Publishing Company; 2009.

    Google Scholar 

  6. Greenhalgh T, Hurwitz B. Narrative based medicine: why study narrative? Br Med J. 1999;318:48–50.

    Article  CAS  Google Scholar 

  7. Sturmberg JP, Siew E-G, Churilov L, Smith-Miles K. Identifying patterns in primary care consultations: a cluster analysis. J Eval Clin Pract. 2009;15(3): 558–64.

    Article  PubMed  Google Scholar 

  8. Deboeck G, Kohonen T. Explorations in finance with self organizing maps. London: Springer; 1998.

    Google Scholar 

  9. Bolton P, Mira M, Sprogis A. Oranges are not the only fruit: the role of emergency departments in providing care to primary care patients. Aust Health Rev. 2000;23(3):132–6.

    Article  PubMed  CAS  Google Scholar 

  10. Cooke M, Wilson S, Pearson S. The effect of a separate stream for minor injuries on accident and emergency department waiting times. Emerg Med J. 2002;19(1):28–30.

    Article  PubMed  CAS  Google Scholar 

  11. Jiang H, editor. Predicting emergency department status. Proceedings of International Conference on Optimization: Techniques and Applications Pacific Optimization Research Activity Group. Ballarat, Australia, 2004.

    Google Scholar 

  12. Coleridge JT, Cameron PA, White JB, Epstein J. Profile of emergency department attendances. Emerg Med. 1993;5(1):18–27.

    Google Scholar 

  13. Liaw S-T, Hill T, Bryce H, Adams G. Emergency and primary care at a Melbourne hospital: reasons for attendance and satisfaction. Aust Health Rev. 2001; 24(2):120–34.

    Article  PubMed  CAS  Google Scholar 

  14. Ceglowski R, Churilov L, Wasserthiel J. Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. J Oper Res Soc. 2007;58(2):246–54.

    Google Scholar 

  15. Lane DC, Monefeldt C, Rosenhead JV. Looking in the wrong place for healthcare improvements: a system dynamics study of an accident and emergency department. J Oper Res Soc. 2000;51(5):518–31.

    Google Scholar 

  16. Bagust A, Place M, Posnett JW. Dynamics of bed use in accommodating emergency admissions: stochastic simulation model. Br Med J. 1999;319(7203):155–8.

    Article  CAS  Google Scholar 

  17. Hoffenberg S, Hill MB, Houry D. Does sharing process differences reduce patient length of stay in the emergency department? Ann Emerg Med. 2001;38(5): 533–40.

    Article  PubMed  CAS  Google Scholar 

  18. Harper PR. A framework for operational modelling of hospital resources. Health Care Manage Sci. 2002; 5(3):165–73.

    Article  Google Scholar 

  19. Jun JB, Jacobson SH, Swisher JR. Application of discrete-event simulation in health care clinics: a survey. J Oper Res Soc. 1999;50(2):109–23.

    Google Scholar 

  20. Schneider KCMPH, Lichtenstein JLMD, Freeman JLP, Newbold RCMM, Fetter RBDBA, Gottlieb LMD, et al. Ambulatory visit groups: an outpatient classification system. J Ambul Care Manage. 1988;11(3):1.

    PubMed  CAS  Google Scholar 

  21. Jelinek G. A Casemix information system for Australian Hospital Emergency departments. Perth, Western Australia: A report to the Commissioner of Health; 1995.

    Google Scholar 

  22. Bond M, Erwich-Nijhout M, Phillips D, Baggoley C. Urgency, disposition and age groups: a Casemix model for emergency medicine. Emerg Med. 1998; 10(2):103–10.

    Google Scholar 

  23. Isken MW, Rajagopalan B. Data mining to support simulation modeling of patient flow in hospitals. J Med Syst. 2002;26(2):179–97.

    Article  PubMed  Google Scholar 

  24. Kohonen T. Self-organizing maps. Berlin: Springer; 1995.

    Book  Google Scholar 

  25. Kennedy RL, Lee Y, Van Roy B, Reed CD, Lippman RP. Solving data mining problems through pattern recognition. Englewood Cliffs, NJ: Prentice-Hall; 1998.

    Google Scholar 

  26. Ward J. Hierarchical grouping to optimise an objective function. J Am Statist Assoc. 1963;58(301): 236–44.

    Article  Google Scholar 

  27. Baesler F, Jahnsen H, DaCosta M, editors. The use of simulation and design of experiments for estimating maximum capacity in an emergency room. New Orleans, LA: Winter Simulation Conference INFORMS; 2003.

    Google Scholar 

  28. Brailsford S, Churilov L, Liew S, editors. Treating ailing emergency departments with simulation: An integrated perspective, 36th Annual Simulation Symposium—Society for modeling and simulation international. Orlando, FL: IEEE Computer Society; 2003.

    Google Scholar 

  29. Mahapatra S, Koelling CP, Patvivatsiri L, Fraticelli BMP, Eitel D, Grove L, editors. Pairing emergency severity index 5-level triage data with computer aided system design to improve emergency department access and throughput. New Orleans, LA: Winter Simulation Conference INFORMS; 2003.

    Google Scholar 

  30. Miller MJ, Ferrin DM, Szymanski JM, editors. Simulating Six Sigma improvement ideas for a hospital emergency department. New Orleans, LA: Winter Simulation Conference INFORMS; 2003.

    Google Scholar 

  31. Miró Ò, Sánchez M, Espinosa G, Coll-Vinent B, Bragulat E, Millá J. Analysis of patient flow in the emergency department and the effect of an extensive reorganisation. Emerg Med J. 2003;20(2):143–8.

    Article  PubMed  Google Scholar 

  32. Samaha S, Armel WS, Starks DW, editors. The use of simulation to reduce the length of stay in an emergency department. New Orleans, LA: Winter Simulation Conference INFORMS; 2003.

    Google Scholar 

  33. Wiinamaki A, Dronzek R, editors. Using simulation in the architectural concept phase of an emergency department design. New Orleans, LA: Winter Simulation Conference INFORMS; 2003.

    Google Scholar 

  34. Connelly LG, Bair AE. Discrete event simulation of emergency department activity: a platform for system-level operations research. Acad Emerg Med. 2004;11(11):1177–85.

    Article  PubMed  Google Scholar 

  35. Cleary MI, Ashby RH, Jelinek GA, Lagaida R. The future of Casemix in emergency medicine and ambulatory care. Med J Aust. 1994;161(Suppl):S30–3.

    PubMed  Google Scholar 

  36. Motohashi Y, Nishi S. Prediction of end-stage renal disease patient population in Japan by systems dynamics model. Int J Epidemiol. 1991;20(4):1032–6.

    Article  PubMed  CAS  Google Scholar 

  37. Masnick K, McDonnell G. A model linking clinical workforce skill mix planning to health and health care dynamics. Hum Resour Health. 2010;8(1):11.

    Article  PubMed  Google Scholar 

  38. Paul SA, Reddy MC, DeFlitch CJ. A systematic review of simulation studies investigating emergency department overcrowding. Simulation. 2010;86(8-9):559–71.

    Google Scholar 

  39. Wolstenholme E, Monk D, McKelvie D, Arnold S. Coping but not coping in health and social care: masking the reality of running organisations beyond safe design capacity. Syst Dyn Rev. 2007;23(4):371–89.

    Article  Google Scholar 

  40. Gray L, Broe GA, Duckett SJ, Gibson DM, Travers C, McDonnell G. Developing a policy simulator at the acute-aged care interface. Aust Health Rev. 2006; 30(4):450–7.

    Article  PubMed  Google Scholar 

  41. Homer J, Hirsch G, Milstein B. Chronic illness in a complex health economy: the perils and promises of downstream and upstream reforms. Syst Dyn Rev. 2007;23(2–3):313–43.

    Article  Google Scholar 

General System Dynamics and Health References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim P. Sturmberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sturmberg, J.P., Churilov, L., McDonnell, G. (2013). Modelling. In: Sturmberg, J., Martin, C. (eds) Handbook of Systems and Complexity in Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4998-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4998-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4997-3

  • Online ISBN: 978-1-4614-4998-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics