Skip to main content

Neuroprotection in Demyelinating Diseases: The Therapeutic Potential of the Neurotrophins

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The myelin sheath has evolved to exert critical influences upon the central and peripheral nervous systems. Recently, the neurotrophins have been implicated in influencing the dynamic and complex signals that occur between neurons and myelinating glial cells – Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system – that regulate myelination. Somewhat surprisingly, the neurotrophins have been found to influence myelination in a complex manner involving both promyelinating and inhibitory signals that can be directed against either neuronal or glial cells that ultimately regulate central and peripheral myelin formation in distinct ways. The neurotrophins and their receptors have also been shown to influence the severity and affect remyelination in distinct in vivo models of demyelinating disease. Together, these data indicate that the selective targeting of neurotrophin receptors to promote remyelination offers an exciting prospect for the treatment of demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGRP:

Calcitonin gene-related peptide

CNS:

Central nervous system

DPN:

Diabetic peripheral neuropathy

DRG:

Dorsal root ganglion

EAE:

Experimental autoimmune encephalomyelitis

EAN:

Experimental autoimmune neuritis

Erk:

Extracellular signal-regulated kinase

GPCR:

G Protein-coupled receptor

MAPK:

Mitogen-activated protein kinase

MS:

Multiple sclerosis

NRG:

Neuregulin

NTR:

Neurotrophin receptor

OPCs:

Oligodendrocyte progenitor cells

PNS:

Peripheral nervous system

TrkB:

Tropomyosin-related kinase B

References

  • Aharoni, R., Eilam, R., Domev, H., Labunskay, G., Sela, M., & Arnon, R. (2005). The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 19045–19050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apfel, S. C. (1999a). Neurotrophic factors and diabetic peripheral neuropathy. European Neurology, 41(Suppl 1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C. (1999b). Neurotrophic factors in peripheral neuropathies: Therapeutic implications. Brain Pathology, 9, 393–413.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C. (2001). Neurotrophic factor therapy–prospects and problems. Clinical Chemistry and Laboratory Medicine, 39, 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C. (2002). Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold? International Review of Neurobiology, 50, 393–413.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C., Arezzo, J. C., Brownlee, M., Federoff, H., & Kessler, J. A. (1994). Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Research, 634, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C., Kessler, J. A., Adornato, B. T., Litchy, W. J., Sanders, C., & Rask, C. A. (1998). Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF study group. Neurology, 51, 695–702.

    Article  CAS  PubMed  Google Scholar 

  • Apfel, S. C., Schwartz, S., Adornato, B. T., Freeman, R., Biton, V., Rendell, M., Vinik, A., Giuliani, M., Stevens, J. C., Barbano, R., & Dyck, P. J. (2000). Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. RhNGF clinical investigator group. JAMA : The Journal of the American Medical Association, 284, 2215–2221.

    Article  CAS  Google Scholar 

  • Barres, B. A., Schmid, R., Sendnter, M., & Raff, M. C. (1993). Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 118, 283–295.

    CAS  PubMed  Google Scholar 

  • Barres, B. A., Raff, M. C., Gaese, F., Bartke, I., Dechant, G., & Barde, Y. A. (1994). A crucial role for neurotrophin-3 in oligodendrocyte development. Nature, 367, 371–375.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier, C., & Nave, K. A. (2008). Neuregulin-1, a key axonal signal that drives schwann cell growth and differentiation. Glia, 56, 1491–1497.

    Article  PubMed  Google Scholar 

  • Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T., & Bruck, W. (2000). Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain, 123(Pt 6), 1174–1183.

    Article  PubMed  Google Scholar 

  • Bron, R., Klesse, L. J., Shah, K., Parada, L. F., & Winter, J. (2003). Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Molecular and Cellular Neurosciences, 22, 118–132.

    Article  CAS  PubMed  Google Scholar 

  • Burbach, G. J., Hellweg, R., Haas, C. A., Del, T. D., Deicke, U., & Abramowski, D. (2004). Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. Journal of Neuroscience, 24, 10.

    Article  CAS  Google Scholar 

  • Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. F., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., & Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A New resource for understanding brain development and function. Journal of Neuroscience, 28, 14.

    Article  CAS  Google Scholar 

  • Cellerino, A., Carroll, P., Thoenen, H., & Barde, Y. A. (1997). Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Molecular and Cellular Neuroscience, 9, 397–408.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. R., Cosgaya, J. M., Wu, Y. J., & Shooter, E. M. (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 98, 14661–14668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan, J. R., Watkins, T. A., Cosgaya, J. M., Zhang, C., Chen, L., Reichardt, L. F., Shooter, E. M., & Barres, B. A. (2004). NGF controls axonal receptivity to myelination by schwann cells or oligodendrocytes. Neuron, 43, 183–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan, J. R., Jolicoeur, C., Yamauchi, J., Elliott, J., Fawcett, J. P., Ng, B. K., & Cayouette, M. (2006). The polarity protein par-3 directly interacts with p75NTR to regulate myelination. Science, 314, 832–836.

    Article  CAS  PubMed  Google Scholar 

  • Chao, M. V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nature Reviews Neuroscience, 4, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Chew, L. J., Coley, W., Cheng, Y., & Gallo, V. (2010). Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. Journal of Neuroscience, 30, 11011–11027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen, R. I., Marmur, R., Norton, W. T., Mehler, M. F., & Kessler, J. A. (1996). Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes. Journal of Neuroscience, 16, 6433–6442.

    CAS  PubMed  Google Scholar 

  • Conover, J. C., & Yancopoulos, G. D. (1997). Neurotrophin regulation of the developing nervous system: Analyses of knockout mice. Reviews in the Neurosciences, 8, 13–27.

    Article  CAS  PubMed  Google Scholar 

  • Cosgaya, J. M., Chan, J. R., & Shooter, E. M. (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science, 298, 1245–1248.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts-Meek, S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D. L., Levinson, A. D., et al. (1994). Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell, 76, 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  • Daub, H., Weiss, F. U., Wallasch, C., & Ullrich, A. (1996). Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature, 379, 557–560.

    Article  CAS  PubMed  Google Scholar 

  • De Santi, L., Annunziata, P., Sessa, E., & Bramanti, P. (2009). Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Neurological Sciences, 287, 17–26.

    Article  CAS  Google Scholar 

  • De Stefano, N., Matthews, P. M., Fu, L., Narayanan, S., Stanley, J., Francis, G. S., Antel, J. P., & Arnold, D. L. (1998). Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain, 121(Pt 8), 1469–1477.

    Article  PubMed  Google Scholar 

  • Du, Y., Fischer, T. Z., Lee, L. N., Lercher, L. D., & Dreyfus, C. F. (2003). Regionally specific effects of BDNF on oligodendrocytes. Developmental Neuroscience, 25, 116–126.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, D., Patel, P., Stephens, R. M., Perez, P., Chao, M. V., Kaplan, D. R., & Hempstead, B. L. (2001). The cytoplasmic and transmembrane domains of the p75 and Trk a receptors regulate high affinity binding to nerve growth factor. Journal of Biological Chemistry, 276, 32687–32695.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, J. M., & Hughes, R. A. (2009). Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorganic & Medicinal Chemistry, 17, 2695–2702.

    Article  CAS  Google Scholar 

  • Fletcher, J. M., Morton, C. J., Zwar, R. A., Murray, S. S., O’Leary, P. D., & Hughes, R. A. (2008). Design of a conformationally defined and proteolytically stable circular mimetic of brain-derived neurotrophic factor. Journal of Biological Chemistry, 283, 33375–33383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin, R. J., & Ffrench-Constant, C. (2008). Remyelination in the CNS: From biology to therapy. Nature Reviews Neuroscience, 9, 839–855.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, R. J., Ffrench-Constant, C., Edgar, J. M., & Smith, K. J. (2012). Neuroprotection and repair in multiple sclerosis. Nature Reviews. Neurology, 8, 624–634.

    Article  PubMed  Google Scholar 

  • Fressinaud, C., Jean, I., & Dubas, F. (2003). Selective decrease in axonal nerve growth factor and insulin-like growth factor I immunoreactivity in axonopathies of unknown etiology. Acta Neuropathologica, 105, 477–483.

    CAS  PubMed  Google Scholar 

  • Fyffe-Maricich, S. L., Karlo, J. C., Landreth, G. E., & Miller, R. H. (2011). The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. Journal of Neuroscience, 31, 843–850.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gold, R., Hartung, H. P., & Toyka, K. V. (2000). Animal models for autoimmune demyelinating disorders of the nervous system. Molecular Medicine Today, 6, 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Pollak, J., Yang, T., Siddiqui, M. R., Doyle, K. P., Taravosh-Lahn, K., Cekanaviciute, E., Han, A., Goodman, J. Z., Jones, B., Jing, D., Massa, S. M., Longo, F. M., & Buckwalter, M. S. (2012). Delayed administration of a small molecule tropomyosin-related kinase B ligand promotes recovery after hypoxic-ischemic stroke. Stroke, 43, 1918–1924.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annual Review of Biochemistry, 72, 609–642.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, R. (2008). Peripheral nerve diseases: The bare essentials. Practical Neurology, 8, 396–405.

    Article  PubMed  Google Scholar 

  • Hughes, R. A., & Cornblath, D. R. (2005). Guillain-Barre syndrome. Lancet, 366, 1653–1666.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, K., Klinkosz, B., Greene, T., Cedarbaum, J. M., Wong, V., Lindsay, R. M., & Mitsumoto, H. (1995). Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Annals of Neurology, 37, 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Irvine, K. A., & Blakemore, W. F. (2008). Remyelination protects axons from demyelination-associated axon degeneration. Brain, 131, 1464–1477.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, A., Fyffe-Maricich, S. L., Furusho, M., Miller, R. H., & Bansal, R. (2012). ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. Journal of Neuroscience, 32, 8855–8864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Blanchi, B., Sun, Y. E., & Ye, K. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proceedings of the National Academy of Sciences of the United States of America, 107, 2687–2692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Je, H. S., Yang, F., Ji, Y., Nagappan, G., Hempstead, B. L., & Lu, B. (2012). Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proceedings of the National Academy of Sciences of the United States of America, 109, 15924–15929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffery, N. D., & Blakemore, W. F. (1997). Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain, 120(Pt 1), 27–37.

    Article  PubMed  Google Scholar 

  • Johnson, R. A., Lam, M., Punzo, A. M., Li, H., Lin, B. R., Ye, K., Mitchell, G. S., & Chang, Q. (2012). 7,8-Dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome. Journal of Applied Physiology, 112, 704–710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones, K. R., Farinas, I., Backus, C., & Reichardt, L. F. (1994). Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell, 76, 989–999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn, M. A., Kumar, S., Liebl, D., Chang, R., Parada, L. F., & De Vellis, J. (1999). Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia, 26, 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Kerschensteiner, M., Gallmeier, E., Behrens, L., Leal, V. V., Misgeld, T., Klinkert, W. E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R. L., Bartke, I., Stadelmann, C., Lassmann, H., Wekerle, H., & Hohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? The Journal of Experimental Medicine, 189, 865–870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, S., & de Vellis, J. (1996). Neurotrophin activates signal transduction in oligodendroglial cells: Expression of functional TrkC receptor isoforms. Journal of Neuroscience Research, 44, 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Kahn, M. A., Dinh, L., & de Vellis, J. (1998). NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. Journal of Neuroscience Research, 54, 754–765.

    Article  CAS  PubMed  Google Scholar 

  • Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P. E., Griffiths, I. R., & Nave, K. A. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics, 33, 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. H., Geyer, E., Flach, A. C., Jung, K., Gold, R., Flügel, A., Linker, R. A., & Lühder, F. (2011). Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination. Acta Neuropathologica, 123, 247–258.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee, F. S., & Chao, M. V. (2001). Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proceedings of the National Academy of Sciences of the United States of America, 98, 3555–3560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, F. S., Rajagopal, R., Kim, A. H., Chang, P. C., & Chao, M. V. (2002). Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. Journal of Biological Chemistry, 277, 9096–9102.

    Article  CAS  PubMed  Google Scholar 

  • Lee, X., Yang, Z., Shao, Z., Rosenberg, S. S., Levesque, M., Pepinsky, R. B., Qiu, M., Miller, R. H., Chan, J. R., & Mi, S. (2007). NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. Journal of Neuroscience, 27, 220–225.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Morrison, B. M., Li, Y., Lengacher, S., Farah, M. H., Hoffman, P. N., Liu, Y., Tsingalia, A., Jin, L., Zhang, P. W., Pellerin, L., Magistretti, P. J., & Rothstein, J. D. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487, 443–448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin, G. R., & Barde, Y. A. (1996). Physiology of the neurotrophins. Annual Review of Neuroscience, 19, 289–317.

    Article  CAS  PubMed  Google Scholar 

  • Liebetanz, D., & Merkler, D. (2006). Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Experimental Neurology, 202, 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Liebl, D. J., Tessarollo, L., Palko, M. E., & Parada, L. F. (1997). Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. Journal of Neuroscience, 17, 9113–9121.

    CAS  PubMed  Google Scholar 

  • Linker, R. A., Lee, D. H., Demir, S., Wiese, S., Kruse, N., Siglienti, I., Gerhardt, E., Neumann, H., Sendtner, M., Luhder, F., & Gold, R. (2010). Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: Therapeutic implications in a model of multiple sclerosis. Brain, 133, 2248–2263.

    Article  PubMed  Google Scholar 

  • Liu, X., Chan, C. B., Jang, S. W., Pradoldej, S., Huang, J., He, K., Phun, L. H., France, S., Xiao, G., Jia, Y., Luo, H. R., & Ye, K. (2010). A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. Journal of Medicinal Chemistry, 53, 8274–8286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, X., Chan, C. B., Qi, Q., Xiao, G., Luo, H. R., He, X., & Ye, K. (2012). Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression. Journal of Medicinal Chemistry, 55, 8524–8537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luttrell, L. M., Daaka, Y., & Lefkowitz, R. J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 11, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Makar, T. K., Bever, C. T., Singh, I. S., Royal, W., Sahu, S. N., Sura, T. P., Sultana, S., Sura, K. T., Patel, N., Dhib-Jalbut, S., & Trisler, D. (2009). Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. Journal of Neuroimmunology, 210, 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Massa, S. M., Xie, Y., Yang, T., Harrington, A. W., Kim, M. L., Yoon, S. O., Kraemer, R., Moore, L. A., Hempstead, B. L., & Longo, F. M. (2006). Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. Journal of Neuroscience, 26, 5288–5300.

    Article  CAS  PubMed  Google Scholar 

  • Massa, S. M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J. N., Nehama, D., Rajadas, J., & Longo, F. M. (2010). Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. The Journal of Clinical Investigation, 120, 1774–1785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald, W. I., & Sears, T. A. (1969). Effect of demyelination on conduction in the central nervous system. Nature, 221, 182–183.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, J. M., & McHugh, W. B. (2004). Diabetes and peripheral sensory neurons: What we don’t know and how it can hurt us. AACN Clinical Issues, 15, 136–149.

    Article  PubMed  Google Scholar 

  • Mi, S., Miller, R. H., Lee, X., Scott, M. L., Shulag-Morskaya, S., Shao, Z., Chang, J., Thill, G., Levesque, M., Zhang, M., Hession, C., Sah, D., Trapp, B., He, Z., Jung, V., McCoy, J. M., & Pepinsky, R. B. (2005). LINGO-1 negatively regulates myelination by oligodendrocytes. Nature Neuroscience, 8, 745–751.

    Article  CAS  PubMed  Google Scholar 

  • Michailov, G. V., Sereda, M. W., Brinkmann, B. G., Fischer, T. M., Haug, B., Birchmeier, C., Role, L., Lai, C., Schwab, M. H., & Nave, K. A. (2004). Axonal neuregulin-1 regulates myelin sheath thickness. Science, 304, 700–703.

    Article  CAS  PubMed  Google Scholar 

  • Miller, D. H. (1996). Demyelinating diseases. Current Opinion in Neurology, 9, 153–154.

    Article  CAS  PubMed  Google Scholar 

  • Mitsumoto, H., Ikeda, K., Klinkosz, B., Cedarbaum, J. M., Wong, V., & Lindsay, R. M. (1994). Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science, 265, 1107–1110.

    Article  CAS  PubMed  Google Scholar 

  • Molliver, D. C., & Snider, W. D. (1997). Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. The Journal of Comparative Neurology, 381, 428–438.

    Article  CAS  PubMed  Google Scholar 

  • Murray, S. S., Bartlett, P. F., & Cheema, S. S. (1999). Differential loss of spinal sensory but not motor neurons in the p75NTR knockout mouse. Neuroscience Letters, 267, 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, S. P., Flores, A. I., Wang, F., & Macklin, W. B. (2009). Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. Journal of Neuroscience, 29, 6860–6870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nave, K. A., & Salzer, J. L. (2006). Axonal regulation of myelination by neuregulin 1. Current Opinion in Neurobiology, 16, 492–500.

    Article  CAS  PubMed  Google Scholar 

  • Obata, K., Katsura, H., Sakurai, J., Kobayashi, K., Yamanaka, H., Dai, Y., Fukuoka, T., & Noguchi, K. (2006). Suppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury. Journal of Neuroscience, 26, 11974–11986.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary, P. D., & Hughes, R. A. (1998). Structure-activity relationships of conformationally constrained peptide analogues of loop 2 of brain-derived neurotrophic factor. Journal of Neurochemistry, 70, 1712–1721.

    Article  PubMed  Google Scholar 

  • O’Leary, P. D., & Hughes, R. A. (2003). Design of potent peptide mimetics of brain-derived neurotrophic factor. Journal of Biological Chemistry, 278, 25738–25744.

    Article  PubMed  CAS  Google Scholar 

  • Oluich, L. J., Stratton, J. A., Xing, Y. L., Ng, S. W., Cate, H. S., Sah, P., Windels, F., Kilpatrick, T. J., & Merson, T. D. (2012). Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. Journal of Neuroscience, 32, 8317–8330.

    Article  CAS  PubMed  Google Scholar 

  • Pehar, M., Cassina, P., Vargas, M. R., Xie, Y., Beckman, J. S., Massa, S. M., Longo, F. M., & Barbeito, L. (2006). Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. European Journal of Neuroscience, 24, 1575–1580.

    Article  PubMed  Google Scholar 

  • Pepinsky, R. B., Walus, L., Shao, Z., Ji, B., Gu, S., Sun, Y., Wen, D., Lee, X., Wang, Q., Garber, E., & Mi, S. (2011a). Production of a PEGylated Fab’ of the anti-LINGO-1 Li33 antibody and assessment of its biochemical and functional properties in vitro and in a rat model of remyelination. Bioconjugate Chemistry, 22, 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Pepinsky, R. B., Shao, Z., Ji, B., Wang, Q., Meng, G., Walus, L., Lee, X., Hu, Y., Graff, C., Garber, E., Meier, W., & Mi, S. (2011b). Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. Journal of Pharmacology and Experimental Therapeutics, 339, 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, G., & Vinik, A. (2003). Nerve growth factor and diabetic neuropathy. Experimental Diabesity Research, 4, 271–285.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poduslo, J. F., & Curran, G. L. (1996). Permeability at the blood–brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Research. Molecular Brain Research, 36, 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Pradat, P. F., Kennel, P., Naimi-Sadaoui, S., Finiels, F., Orsini, C., Revah, F., Delaere, P., & Mallet, J. (2001). Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Human Gene Therapy, 12, 2237–2249.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal, R., Chen, Z. Y., Lee, F. S., & Chao, M. V. (2004). Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. Journal of Neuroscience, 24, 6650–6658.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, M. (2007). Effectors of demyelination and remyelination in the CNS: Implications for multiple sclerosis. Brain Pathology, 17, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. S., Ng, B. K., & Chan, J. R. (2006). The quest for remyelination: A new role for neurotrophins and their receptors. Brain Pathology, 16, 288–294.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, N., Rodriguez, R., & Arevalo, M. A. (2004). In vitro myelination by oligodendrocyte precursor cells transfected with the neurotrophin-3 gene. Glia, 47, 78–87.

    Article  PubMed  Google Scholar 

  • Ryden, M., Murray-Rust, J., Glass, D., Ilag, L. L., Trupp, M., Yancopoulos, G. D., McDonald, N. Q., & Ibanez, C. F. (1995). Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO Journal, 14, 1979–1990.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saini, H. S., Gorse, K. M., Boxer, L. M., & Sato-Bigbee, C. (2004). Neurotrophin-3 and a CREB-mediated signaling pathway regulate Bcl-2 expression in oligodendrocyte progenitor cells. Journal of Neurochemistry, 89, 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, D. A., Yang, T., Ogier, M., Adams, I., Mirakhur, Y., Wang, Q., Massa, S. M., Longo, F. M., & Katz, D. M. (2012). A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. Journal of Neuroscience, 32, 1803–1810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silos-Santiago, I., Molliver, D. C., Ozaki, S., Smeyne, R. J., Fagan, A. M., Barbacid, M., & Snider, W. D. (1995). Non-TrkA-expressing small DRG neurons are lost in TrkA deficient mice. Journal of Neuroscience, 15, 5929–5942.

    CAS  PubMed  Google Scholar 

  • Song, X. Y., Zhou, F. H., Zhong, J. H., Wu, L. L., & Zhou, X. F. (2006). Knockout of p75(NTR) impairs re-myelination of injured sciatic nerve in mice. Journal of Neurochemistry, 96, 833–842.

    Article  CAS  PubMed  Google Scholar 

  • Stadelmann, C., Kerschensteiner, M., Misgeld, T., Bruck, W., Hohlfeld, R., & Lassmann, H. (2002). BDNF and gp145trkB in multiple sclerosis brain lesions: Neuroprotective interactions between immune and neuronal cells. Brain, 125, 11.

    Article  Google Scholar 

  • Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., Esper, R. M., Loeb, J. A., Shrager, P., Chao, M. V., Falls, D. L., Role, L., & Salzer, J. L. (2005). Neuregulin-1 type III determines the ensheathment fate of axons. Neuron, 47, 681–694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teng, K. K., Felice, S., Kim, T., & Hempstead, B. L. (2010). Understanding proneurotrophin actions: Recent advances and challenges. Developmental Neurobiology, 70, 350–359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tessarollo, L., Tsoulfas, P., Donovan, M. J., Palko, M. E., Blair-Flynn, J., Hempstead, B. L., & Parada, L. F. (1997). Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 94, 14776–14781.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita, K., Kubo, T., Matsuda, K., Fujiwara, T., Yano, K., Winograd, J. M., Tohyama, M., & Hosokawa, K. (2007). The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia, 55, 1199–1208.

    Article  PubMed  Google Scholar 

  • Trapp, B. D., Nishiyama, A., Cheng, D., & Macklin, W. (1997). Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. The Journal of Cell Biology, 137, 459–468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyler, W. A., Gangoli, N., Gokina, P., Kim, H. A., Covey, M., Levison, S. W., & Wood, T. L. (2009). Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. Journal of Neuroscience, 29, 6367–6378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VonDran, M. W., Clinton-Luke, P., Honeywell, J. Z., & Dreyfus, C. F. (2010). BDNF+/− mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia, 58, 848–856.

    PubMed Central  PubMed  Google Scholar 

  • VonDran, M. W., Singh, H., Honeywell, J. Z., & Dreyfus, C. F. (2011). Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. Journal of Neuroscience, 31, 14182–14190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan, L., Xia, R., & Ding, W. (2010). Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on schwann cell polarization. Journal of Neuroscience Research, 88, 2578–2587.

    CAS  PubMed  Google Scholar 

  • Wiese, S., Jablonka, S., Holtmann, B., Orel, N., Rajagopal, R., Chao, M. V., & Sendtner, M. (2007). Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proceedings of the National Academy of Sciences of the United States of America, 104, 17210–17215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiggins, R. C., Benjamins, J. A., & Morell, P. (1975). Appearance of myelin proteins in rat sciatic nerve during development. Brain Research, 89, 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A. W., Xiao, J., Kemper, D., Kilpatrick, T. J., & Murray, S. S. (2013). Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. Journal of Neuroscience, 33(11), 4947–4957

    Article  CAS  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., Hempstead, B. L., & Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, A. G., Tait, K. J., Hurren, B. J., Fisher, L., Sheard, P. W., & Duxson, M. J. (2008). Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of schwann cells. Glia, 56, 306–317.

    Article  PubMed  Google Scholar 

  • Xiao, J., Kilpatrick, T. J., & Murray, S. S. (2009a). The role of neurotrophins in the regulation of myelin development. Neurosignals, 17, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Wong, A. W., Willingham, M. M., Kaasinen, S. K., Hendry, I. A., Howitt, J., Putz, U., Barrett, G. L., Kilpatrick, T. J., & Murray, S. S. (2009b). BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. Journal of Neuroscience, 29, 4016–4022.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Wong, A. W., Willingham, M. M., van den Buuse, M., Kilpatrick, T. J., & Murray, S. S. (2010). Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals, 18, 186–202.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Ferner, A. H., Wong, A. W., Denham, M., Kilpatrick, T. J., & Murray, S. S. (2012). Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. Journal of Neurochemistry, 122, 1167–1180.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Hughes, R., Lim, J. Y., Ferner, A. H., Wong, A. W., Kilpatrick, T. J., & Murray, S. S. (2013). A small peptide mimetic of BDNF promotes peripheral myelination. Journal of Neurochemistry, 125(3), 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, J., Chan, J. R., & Shooter, E. M. (2003). Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 100, 14421–14426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi, J., Chan, J. R., & Shooter, E. M. (2004). Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proceedings of the National Academy of Sciences of the United States of America, 101, 8774–8779.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi, J., Chan, J. R., Miyamoto, Y., Tsujimoto, G., & Shooter, E. M. (2005a). The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proceedings of the National Academy of Sciences of the United States of America, 102, 5198–5203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi, J., Miyamoto, Y., Tanoue, A., Shooter, E. M., & Chan, J. R. (2005b). Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proceedings of the National Academy of Sciences of the United States of America, 102, 14889–14894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan, H., & Wood, P. M. (2000). NT-3 weakly stimulates proliferation of adult rat O1(−)O4(+) oligodendrocyte-lineage cells and increases oligodendrocyte myelination in vitro. Journal of Neuroscience Research, 62, 329–335.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T., Knowles, J. K., Lu, Q., Zhang, H., Arancio, O., Moore, L. A., Chang, T., Wang, Q., Andreasson, K., Rajadas, J., Fuller, G. G., Xie, Y., Massa, S. M., & Longo, F. M. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One, 3, e3604.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yin, X., Baek, R. C., Kirschner, D. A., Peterson, A., Fujii, Y., Nave, K. A., Macklin, W. B., & Trapp, B. D. (2006). Evolution of a neuroprotective function of central nervous system myelin. The Journal of Cell Biology, 172, 469–478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zawadzka, M., & Franklin, R. J. (2007). Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Current Opinion in Neurology, 20, 294–298.

    Article  PubMed  Google Scholar 

  • Zhang, J. Y., Luo, X. G., Xian, C. J., Liu, Z. H., & Zhou, X. F. (2000). Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. European Journal of Neuroscience, 12, 4171–4180.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Xiao, J., Hughes, R.A., Murray, S.S. (2014). Neuroprotection in Demyelinating Diseases: The Therapeutic Potential of the Neurotrophins. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_36

Download citation

Publish with us

Policies and ethics