Skip to main content

Planetary Bow Shocks

  • Chapter
Physics of Collisionless Shocks

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 12))

Abstract

Our present knowledge of the properties of the various planetary bow shocks is briefly reviewed. We do not follow the astronomical ordering of the planets. We rather distinguish between magnetised and unmagnetised planets which groups Mercury and Earth with the outer giant planets of the solar system, Mars and Moon in a separate group lacking magnetic fields and dense atmospheres, and Venus together with the comets as the atmospheric celestial objects exposed to the solar wind. Asteroids would, in this classification, fall into the group together with the Moon and should behave similarly though being much smaller. Extra-solar planets are not considered as we have only remote information about their behaviour. The presentation is brief in the sense that our in situ knowledge is rather sporadic yet, depending on just a countable number of bow shock crossings from which just some basic conclusions can be drawn about size, stationarity, shape and nature of the respective shock. The only bow shock of which we have sufficient information to deal in sufficient depth with its physics is Earth’s bow shock. This has been reviewed in other places in this volume and therefore is mentioned here only as the bow-shock-paradigm in passing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilleos N, Bertucci C, Russell CT, Hospodarsky GB, Rymer AM, Arridge CS, Burton ME, Dougherty MK, Hendricks S, Smith EJ, Tsurutani BT (2006) Orientation, location, and velocity of Saturn’s bow shock: initial results from the Cassini spacecraft. J Geophys Res 111:A03201. doi:10.1029/2005JA011297

    Google Scholar 

  • Achilleos N, Dougherty MK, Young DT, Crary F (2004) Magnetic signatures of Jupiter’s bow shock during the Cassini flyby. J Geophys Res 109:A09S04. doi:10.1029/2003JA010258

    Google Scholar 

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden J, Curtis DW, Mitchell D, Rème H, Mazelle C, Sauvaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission. Science 279:1676–1680. doi:10.1126/science.279.5357.1676

    ADS  Google Scholar 

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden J, Rème H, Mazelle C, Vignes D, Bauer SJ, Cloutier P, Ness NF (2001) Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J Geophys Res 106(E10):23403–23417. doi:10.11029/2000JE001404

    ADS  Google Scholar 

  • Acuña MH, Ness NF (1980) The magnetic field of Saturn – Pioneer 11 observations. Science 207:444–446. doi:10.1126/science.207.4429.444

    ADS  Google Scholar 

  • Acuña MH, Ness NF, Connerney JEP (1980) The magnetic field of Saturn – further studies of the Pioneer 11 observations. J Geophys Res 85(A11):5675–5678

    ADS  Google Scholar 

  • Anderson BJ, Acuña MH, Korth H, Purucker ME, Johnson CL, Slacvin JA, Solomon SC, McNutt RL (2008) The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321:82–85. doi:10.1126/science.1159081

    ADS  Google Scholar 

  • Bagenal F (1992) Giant planet magnetospheres. Annu Rev Earth Planet Sci 20:289–328. doi:10.1146/annurev.ea.20.050192.001445

    ADS  Google Scholar 

  • Balikhin MA, Zhang TL, Gedalin M, Ganushkina NY, Pope SA (2008) Venus Express observes a new type of shock with pure kinematic relaxation. Geophys Res Lett 35:L01103. doi:10.1029/2007GL032495

    Google Scholar 

  • Balogh A, Dougherty MK, Forsythe RJ, Southwood DJ, Smith EJ, Tsurutani BT, Murphy N, Burton ME (1992) Magnetic field observations during the ULYSSES flyby of Jupiter. Science 257:1515–1518. doi:10.1126/science.257.5076.1515

    ADS  Google Scholar 

  • Balogh A, Ksanfomality L, von Steiger R (eds) (2008), Mercury space science series of ISSI, vol 26. Springer Science+Business Media, pp 1–468

    Google Scholar 

  • Bame SJ, Anderson RC, Asbridge JR, Baker DN, Feldman WC, Fuselier SA, Gosling JT, McComas DJ, Thomsen MF, Young DT, Zwickl RD (1986) Comet Giacobini-Zinner – plasma description. Science 232:356–361. doi:10.1126/science.232.4748.356

    ADS  MATH  Google Scholar 

  • Belcher JW, Bridge HS, Coppi B, Gordon GS Jr, Lazarus AJ, McNutt RL Jr, Bagenal F, Divers O, Eviatar A, Ogilvie KW (1989) Plasma observations near Neptune – initial results from Voyager 2. Science 246:1478–1483. doi:10.1126/science.246.4936.1478

    ADS  Google Scholar 

  • Bertucci C, Achilleos N, Russell CT, Dougherty MK, Smith EJ, Burton M, Tsurutani BT, Mazelle C (2005) Bow shock and upstream waves at Jupiter and Saturn: Cassini magnetometer observations. In: Li G, Zank GP, Russell CT (eds) The physics of collisionless shocks. AIP conf proc, vol 781, pp 109–115. doi:10.1063/1.2032682

    Google Scholar 

  • Biermann L, Brosowski B, Schmidt HU (1967) The interaction of the solar wind with a comet. Sol Phys 1:254–284. doi:10.1007/BF00150860

    ADS  Google Scholar 

  • Brecht SH (1995) Shock formation at unmagnetized planets. Adv Space Res 15(8/9):415–421. doi:10.1016/0273-1177(94)00126-L

    ADS  Google Scholar 

  • Bridge HS, Belcher JW, Coppi B, Lazarus AJ, McNutt RL Jr, Olbert S, Hartle RE, Ogilvie KW, Sittler EC Jr, Wolfe RS (1986) Plasma observations near Uranus – initial results from Voyager 2. Science 233:89–93. doi:10.1126/science.233.4759.89

    ADS  Google Scholar 

  • Cloutier PA, McElroy MB, Michel FC (1969) Modification of the Martian ionosphere by the solar wind. J Geophys Res 74:6215–6228. doi:10.1029/JA074i026p06215

    ADS  Google Scholar 

  • Coates AJ (1995) Heavy ion effects on cometary shocks. Adv Space Res 15(8/9):403–413. doi:10.1016/0273-1177(94)00125-K

    ADS  Google Scholar 

  • Coates AJ, Johnstone AD, Kessel RL, Huddlestone DE, Wilken B (1990) Plasma parameters near the Comet Halley bow shock. J Geophys Res 95:20701–20716. doi:10.1029/JA095iA12p20701

    ADS  Google Scholar 

  • Colburn DA, Currie RG, Mihalov JD, Sonett CP (1967) Diamagnetic solar-wind cavity discovered behind moon. Science 158:1040–1042. doi:10.1126/science.158.3804.1040

    ADS  Google Scholar 

  • Dubinin E, Obod D, Lundin R, Schwingenschuh K, Grard R (1995) Some features of the Martian bow shock. Adv Space Res 15(8/9):423–431. doi:10.1016/0273-1177(94)00127-M

    ADS  Google Scholar 

  • Dyal P, Parkin CW, Daily WD (1974) Magnetism and the interior of the moon. Rev Geophys Space Phys 12:568–591. doi:10.1029/RG012i004p00568

    ADS  Google Scholar 

  • Frank LA, Burek BG, Ackerson KL, Wolfe JH, Mihalov JD (1980) Plasmas in Saturn’s magnetosphere. J Geophys Res 85(A11):5695–5708. doi:10.1029/JA085iA11p05695

    ADS  Google Scholar 

  • Frank LA, Paterson WR, Ackerson KL, Coroniti FV, Vasyliunas VM (1991) Plasma observations at Venus with Galileo. Science 253:1528–1531. doi:10.1126/science.253.5027.1528

    ADS  Google Scholar 

  • Galeev AA, Gribov BE, Gringauz KI, Klimov SI, Gombosi T (1986) Position and structure of the Comet Halley bow shock – Vega-1 and Vega-2 measurements. Geophys Res Lett 13:841–844. doi:10.1029/GL013i008p00841

    ADS  Google Scholar 

  • Gombosi TI (1991) The plasma environment of comets. Rev Geophys Suppl 29:976–984

    ADS  Google Scholar 

  • Gombosi TI, Hansen KC (2005) Saturn’s variable magnetosphere. Science 307:1224–1226. doi:10.1126/science.1108226

    ADS  Google Scholar 

  • Gombosi TI, Neugebauer M, Johnstone AD, Coates AJ, Huddleston DE (1991) Comparison of observed and calculated implanted ion distributions outside Comet Halley’s bow shock. J Geophys Res 96:9467–9477. doi:10.1029/90JA02750

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Hospodarsky GB, Persoon AM, Averkamp TF, Cecconi B, Lecacheux A, Zarka P et al (2005) Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307:1255–1259. doi:10.1126/science.1105356

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Poynter RL, Granroth LJ, Carins IH, Macek WM, Moses SL, Coroniti FV, Kennel CF, Barbosa DD (1989) First plasma wave observations at Neptune. Science 246:1494–1498. doi:10.1126/science.246.4936.1494

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Roux A, Gendrin R, Kennel CF, Bolton SJ (1991) Lightning and plasma wave observations from the Galileo flyby of Venus. Science 253:1522–1525. doi:10.1126/science.246.4936.1522

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1979) Plasma wave observations near Jupiter – initial results from Voyager 2. Science 206:987–991. doi:10.1126/science.206.4421.987

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1981) Plasma waves near Saturn – initial results from Voyager 1. Science 212:235–239. doi:10.1126/science.212.4491.235

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL, Poynter RL (1986) First plasma wave observations of Uranus. Science 233:106–109. doi:10.1126/science.233.4759.106

    ADS  Google Scholar 

  • Harnett EM, Winglee R (2000) Two-dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the Moon. J Geophys Res 105:24997–25007. doi:10.1126/science.1105356

    ADS  Google Scholar 

  • Hendricks S, Neubauer FM, Dougherty MK, Achilleos N, Russell CT (2005) Variability in Saturn’s bow shock and magnetopause from Pioneer and Voyager: probabilistic predictions and initial observations by Cassini. Geophys Res Lett 32:L20S08. doi:10.1029/2005GL022569

    Google Scholar 

  • Hood LL, Russell CT, Coleman PJ (1981) Contour maps of lunar remanent magnetic fields. J Geophys Res 86:1055–1069

    ADS  Google Scholar 

  • Hood LL, Schubert G (1980) Lunar magnetic anomalies and surface optical properties. Science 208:49–51. doi:10.1029/2000JA000074

    ADS  Google Scholar 

  • Hospodarsky GB, Gurnett DA, Kurth WS, Kivelson MG, Strangeway RJ, Bolton SJ (1994) Fine structure of Langmuir waves observed upstream of the bow shock at Venus. J Geophys Res 99:13363–13371. doi:10.1029/94JA00868

    ADS  Google Scholar 

  • Huddleston DE, Russell CT, Kivelson MG, Khurana KK, Bennett L (1998) Location and shape of the Jovian magnetopause and bow shock. J Geophys Res 103:20075–20082. doi:10.1029/98JE00394

    ADS  Google Scholar 

  • Hynds RJ, Cowley SWH, Sanderson TR, Wenzel K-P, van Rooijen JJ (1986) Observations of energetic ions from comet Giacobini-Zinner. Science 232:361–365. doi:10.1126/science.232.4748.361

    ADS  Google Scholar 

  • Ipavich FM, Galvin AB, Gloeckler G, Hovestadt D, Klecker B, Scholer M (1986) Comet Giacobini-Zinner – in situ observations of energetic heavy ions. Science 232:366–369. doi:10.1126/science.232.4748.366

    ADS  Google Scholar 

  • Kabin K, Gombosi TI, DeZeeuw DL, Powell KG (2000) Interaction of Mercury with the solar wind. Icarus 143:397–406. doi:10.1006/icar.1999.6252

    ADS  Google Scholar 

  • Kallio E, Luhmann JG, Lyon JG (1998) Magnetic field near Venus: a comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation. J Geophys Res 103:4723–4737. doi:10.1029/97JA02862

    ADS  Google Scholar 

  • KecskĂ©mety K, Cravens TE (1992) Accelerated cometary ions observed downstream of the Comet Halley bow shock. J Geophys Res 97:2891–2906. doi:10.1029/91JA02800

    ADS  Google Scholar 

  • Kivelson MG, Kennel CF, McPherron RL, Russell CT, Southwood DJ, Walker RJ, Hammond CM, Khurana KK, Strangeway RJ, Coleman PJ (1991) Magnetic field studies of the solar wind interaction with Venus from the Galileo flyby. Science 253:1518–1522. doi:10.1126/science.246.4936.1518

    ADS  Google Scholar 

  • Krall NA, Tidman DA (1969) Magnetic field fluctuations near the Moon. J Geophys Res 74:6439–6443. doi: 10.1029/JA074i026p06439

    ADS  Google Scholar 

  • Krimigis JW, Bostrom CO, Cheng AF, Armstrong TP, Axford WI (1989) Hot plasma and energetic particles in Neptune’s magnetosphere. Science 246:1483–1489. doi:10.1126/science.246.4936.1483

    ADS  Google Scholar 

  • Krimigis SM, Armstrong TP, Axford WI, Bostrom CO, Gloeckler G, Keath EP, Lanzerotti LJ, Carbary JF, Hamilton DC, Roelof EC (1982) Low-energy hot plasma and particles in Saturn’s magnetosphere. Science 215:571–577. doi:10.1126/science.215.4532.571

    ADS  Google Scholar 

  • Krimigis SM, Armstrong TP, Axford WI, Cheng AF, Gloeckler G (1986) The magnetosphere of Uranus – hot plasma and radiation environment. Science 233:97–102. doi:10.1126/science.233.4759.97

    ADS  Google Scholar 

  • Krimigis SM, Zwickl RD, Baker DN (1985) Energetic ions upstream of Jupiter’s bow shock. J Geophys Res 90:3947–3960. doi:10.1029/JA090iA05p03947

    ADS  Google Scholar 

  • Krupp N, Woch J, Lagg A, Livi S, Mitchell DG, Krimigis SM, Dougherty MK, Hanlon PG, Armstrong TP, Espinosa SA (2004) Energetic particle observations in the vicinity of Jupiter: Cassini MIMI/LEMMS results. J Geophys Res 109:A09S10. doi:10.1029/2003JA010111

    Google Scholar 

  • Kurth WS, Gurnett DA, Hospodarsky GB, Farrell WM, Roux A, Dougherty MK, Joy SP, Kivelson MG, Walker RJ, Crary FJ, Alexander CJ (2002) The dusk flank of Jupiter’s magnetosphere. Nature 415:991–994

    ADS  Google Scholar 

  • Lanzerotti LJ, Armstrong TP, Gold RE, Anderson KA, Krimigis SM, Lin RP, Pick M, Roelof EC, Sarris ET, Simnett GM (1992) The hot plasma environment at Jupiter – ULYSSES results. Science 257:1518–1524. doi:10.1126/science.257.5076.1518

    ADS  Google Scholar 

  • Larson DE, Anderson KA, Lin RP, Carlson CW, Rème H, Glassmeier KH, Neubauer FM (1992) Electron distributions upstream of the Comet Halley bow shock – evidence for adiabatic heating. J Geophys Res 97:2907–2916. doi:10.1029/91JA02698

    ADS  Google Scholar 

  • Lin RP, Anderson KA, Hood LL (1988) Lunar surface magnetic field concentrations antipodal to young large impact basins. Icarus 74:529–541. doi:10.1016/0019-1035(88)90119-4

    ADS  Google Scholar 

  • Lin RP, Mitchell DL, Curtis DW, Anderson KA, Carlson CW, McFadden J, Acuña MH, Hood LL, Binder A (1998) Lunar surface magnetic fields and their interaction with the solar wind: results from Lunar Prospector. Science 281:1480–1484. doi:10.1126/science.281.5382.1480

    ADS  Google Scholar 

  • Lipatov AS, Sharma AS (1994) Hybrid simulation of comet Shoemaker-Levy 9 interaction with Jovian bow shock. Geophys Res Lett 21:1059–1062. doi:10.1029/94GL01295

    ADS  Google Scholar 

  • Luhmann JG (1986) The solar wind interaction with Venus. Space Sci Rev 44:241–306. doi:10.1007/BF00200818

    ADS  Google Scholar 

  • Luhmann JG, Cravens TE (1991) Magnetic fields in the ionosphere of Venus. Space Sci Rev 55:201–274. doi:10.1007/BF00177138

    ADS  Google Scholar 

  • Maclennan CG, Lanzerotti LJ, Krimigis SM, Lepping RP (1983) Low-energy particles at the bow shock, magnetopause, and outer magnetosphere of Saturn. J Geophys Res 88:8817–8830. doi:10.1029/JA088iA11p08817

    ADS  Google Scholar 

  • Masters A, Achilleos N, Dougherty MK, Slavin JA, Hospodarsky GB, Arridge CS, Coates AJ (2008a) An empirical model of Saturn’s bow shock: Cassini observations of shock location and shape. J Geophys Res 113:A10210. doi:10.1029/2008JA013276

    ADS  Google Scholar 

  • Masters A, Arridge CS, Dougherty MK, Bertucci C, Billingham L, Schwartz SJ, Jackman CM, Bebesi Z, Coates AJ, Thomsen MF (2008) Cassini encounters with hot flow anomaly-like phenomena at Saturn’s bow shock. Geophys Res Lett 35:L02202. doi:10.1029/2007GL03237

    Google Scholar 

  • Merka J (2005) On increasing accuracy of bow shock shape and position predictions. In: Li G, Zank GP, Russell CT (eds) The physics of collisionless shocks. AIP conf proc, vol 781, pp 84–88. doi:10.1063/1.2032679

    Google Scholar 

  • Meyer-Vernet N, Couturier P, Hoang S, Perche C, Steinberg JL, Fainberg J, Meetre C (1986) Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner. Science 232:361–365. doi:10.1126/science.232.4748.370

    ADS  Google Scholar 

  • Moore KR, McComas DJ, Russell CT, Mihalov JD (1989) Suprathermal ions observed upstream of the Venus bow shock. J Geophys Res 94:3743–3748. doi:10.1029/JA094iA04p03743

    ADS  Google Scholar 

  • Moses SF, Coroniti FV, Kennel CF, Bagenal F, Lepping RP (1989) Electrostatic waves in the bow shock at Uranus. J Geophys Res 94:13367–13376. doi:10.1029/JA094iA10p13367

    ADS  Google Scholar 

  • Nagy AF, Cravens TE, Yee JG, Stewart AIF (1981) Hot oxygen atoms in the upper atmosphere of Venus. Geophys Res Lett 8:629–632. doi:10.1029/GL008i006p00629

    ADS  Google Scholar 

  • Neubauer FM, Glassmeier KH, Pohl M, Raeder J, Acuña MH, Burlaga LF, Ness NF, Musmann G, Mariani F, Wallis MK, Ungstrup E, Schmidt HU (1986) First results from the Giotto magnetometer experiment at comet Halley. Nature 321:352–355. doi:10.1038/321352a0

    ADS  Google Scholar 

  • Ness NF (1978) Mercury – magnetic field and interior. Space Sci Rev 21:527–553. doi:10.1007/BF00240907

    ADS  Google Scholar 

  • Ness NF, Acuña MH, Behannon KW, Burlaga LF, Connerney JEP, Lepping RP (1986) Magnetic fields at Uranus. Science 233:85–90. doi:10.1126/science.233.4759.85

    ADS  Google Scholar 

  • Ness NF, Acuña MH, Burlaga LF, Connerney JEP, Lepping RP (1989) Magnetic fields at Neptune. Science 246:1473–1478. doi:10.1126/science.246.4936.1473

    ADS  Google Scholar 

  • Ness NF, Acuña MH, Lepping RP, Connerney JEP, Behannon KW, Burlaga LF, Neubauer FM (1981) Magnetic field studies by Voyager 1 – preliminary results at Saturn. Science 212:211–217. doi:10.1126/science.212.4491.211

    ADS  Google Scholar 

  • Ness NF, Acuña MH, Lepping RP, Burlaga LF, Behannon KW, Neubauer FM (1979) Magnetic field studies at Jupiter by Voyager 1 – preliminary results. Science 204:982–986. doi:10.1126/science.204.4396.982

    ADS  Google Scholar 

  • Ness NF, Behannon KW, Taylor HE, Whang YC (1968) Perturbations of the interplanetary magnetic field by the lunar wake. J Geophys Res 73:3421–3440. doi:10.1029/JA073i011p03421

    ADS  Google Scholar 

  • Ness NF, Schatten KH (1969) Detection of interplanetary magnetic field fluctuations stimulated by the lunar wake. J Geophys Res 74:6425–6438. doi:10.1029/JA074i026p06425

    ADS  Google Scholar 

  • Ogilvie KW, Scudder JD, Hartle RE, Siscoe GL, Bridge HS, Lazarus AJ, Asbridge JR, Bame SJ, Yeates CM (1974) Observations at Mercury encounter by the plasma science experiment on Mariner 10. Science 185:145–150. doi:10.1126/science.185.4146.145

    ADS  Google Scholar 

  • Russell CT (1985) Planetary bow shocks. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 109–130

    Google Scholar 

  • Russell CT (ed) (1995) Physics of collisionless shocks. Adv Space Res 15(8/9):401–449. Section 6

    Google Scholar 

  • Russell CT, Luhmann JG, Schwingenschuh K, Riedler W, Yeroshenko YE (1990) Upstream waves at Mars – PHOBOS observations. Geophys Res Lett 17:897–900. doi:10.1029/GL017i006p00897

    ADS  Google Scholar 

  • Russell CT, Phillips JL, Arghavani MR, Mihalov JD, Knudsen WC, Miller K (1984) A possible observation of a cometary bow shock. Geophys Res Lett 11:1022–1025. doi:10.1029/GL011i010p01022

    ADS  Google Scholar 

  • Scarf FL, Coroniti FV, Kennel CF, Gurnett DA, Ip WH, Smith EJ (1986) Plasma wave observations at comet Giacobini-Zinner. Science 232:377–381. doi:10.1126/science.232.4748.377

    ADS  Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS (1979b) Jupiter plasma wave observations – an initial Voyager 1 overview. Science 204:991–995. doi:10.1126/science.204.4396.991

    ADS  Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS (1981) Plasma wave turbulence at planetary bow shocks. Nature 292:747–750. doi:10.1038/292747a0

    ADS  Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1979) Plasma wave turbulence at Jupiter’s bow shock. Nature 280:796–797. doi:10.1038/280796a0

    ADS  Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1982) Voyager 2 plasma wave observations at Saturn. Science 215:587–594. doi:10.1126/science.215.4532.587

    ADS  Google Scholar 

  • Scarf FL, Taylor WWL, Green IM (1979) Plasma waves near Venus – initial observations. Science 203:748–750. doi:10.1126/science.203.4382.748

    ADS  Google Scholar 

  • Scarf FL, Taylor WWL, Russell CT, Elphic RC (1980) Pioneer Venus plasma wave observations – the solar-wind-Venus interaction. J Geophys Res 85:7599–7612. doi:10.1029/JA085iA13p07599

    ADS  Google Scholar 

  • Sharp LR, Coleman PJ Jr, Lichtenstein BR, Russell CT, Schubert G (1973) Orbital mapping of the lunar magnetic field. Moon 7:322–341. doi:10.1007/BF00564638

    ADS  Google Scholar 

  • Slavin JA, Acuña MH, Anderson BJ, Baker DN, Benna M, Gloeckler G, Gold RE, Ho GC, Killen RM, Korth H, Krimigis SM, McNutt RL, Nittler LR, Raines JM, Schriver D, Solomon SC, Starr RD, Travnicek P, Zurbuchen TH (2008) Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321:85–88. doi:10.1126/science.1159040

    ADS  Google Scholar 

  • Slavin JA, Holzer RE (1981) Solar wind flow about the terrestrial planets. I – modeling bow shock position and shape. J Geophys Res 86:11401–11418. doi:10.1029/JA086iA13p11401

    ADS  Google Scholar 

  • Slavin JA, Smith EJ, Spreiter JR, Stahara SS (1985) Solar wind flow about the outer planets – gas dynamic modeling of the Jupiter and Saturn bow shocks. J Geophys Res 90:6275–6286. doi:10.1029/JA090iA07p06275

    ADS  Google Scholar 

  • Smith EJ, Davis L Jr, Jones DE, Coleman PJ Jr, Colburn DS, Dynal P, Sonett CP (1975) Jupiter’s magnetic field, magnetosphere, and interaction with the solar wind – Pioneer 11. Science 188:451–455. doi:10.1126/science.188.4187.451

    ADS  Google Scholar 

  • Smith EJ, Davis L, Jones DE, Coleman PJ, Colburn DS, Dyal P, Sonett CP (1980) Saturn’s magnetic field and magnetosphere. Science 207:407–410. doi:10.1126/science.207.4429.407

    ADS  Google Scholar 

  • Smith EJ, Tsurutani TB, Slavin JA, Jones DE, Siscoe GL, Mendis DA (1986) International cometary explorer encounter with Giacobini-Zinner – magnetic field observations. Science 232:382–385. doi:10.1126/science.232.4748.382

    ADS  Google Scholar 

  • Solomon SC, McNutt RL, Watters TR, Lawrence DJ, Feldman WC, Head JW, Krimigis SM, Murchie SL, Phillips RJ, Slavin JA, Zuber MT (2008) Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science 321:59–62. doi:10.1126/science.1159706

    ADS  Google Scholar 

  • Sonett CP (1975) Solar-wind induction and lunar conductivity. Phys Earth Planet Inter 10:313–322. doi:10.1016/0031-9201(75)90057-6

    ADS  Google Scholar 

  • Sonett CP, Colburn DS (1967) Establishment of a lunar unipolar generator and associated shock and wake by the solar wind. Nature 216:340–343. doi:10.1038/216340a0

    ADS  Google Scholar 

  • Spreiter JR, Stahara SS (1995) The location of planetary bow shocks: a critical overview of theory and observations. Adv Space Res 15(8/9):433–449. doi:10.1016/0273-1177(94)00128-N

    ADS  Google Scholar 

  • Spreiter JR, Summers AL, Alksne AY (1966) Hydromagnetic flow around the magnetosphere. Planet Space Sci 14:223–250. doi:10.1016/0032-0633(66)90124-3

    ADS  Google Scholar 

  • Stone EC, Cooper JF, Cummings AC, McDonald FB, Trainor JH, Lal N, McGuire R (1986) Energetic charged particles in the Uranian magnetosphere. Science 233:93–97. doi:10.1126/science.233.4759.93

    ADS  Google Scholar 

  • Stone EC, Cummings AC, Looper MD, Selesnick RS, Lal N, McDonald FB, Trainor JH (1989) Energetic charged particles in the magnetosphere of Neptune. Science 246:1489–1494. doi:10.1126/science.246.4936.1489

    ADS  Google Scholar 

  • Stone RG, Pedersen BM, Harvey CC, Canu P, Cornilleau-Wehrlin N, Desch MD, de Villedary C, Fainberg J, Farrell WM, Goetz K (1992) ULYSSES radio and plasma wave observations in the Jupiter environment. Science 257:1524–1531. doi:10.1126/science.257.5076.1524

    ADS  Google Scholar 

  • Szabo A, Lepping RP (1995) Neptune inbound bow shock. J Geophys Res 100:1723–1730. doi:10.1029/94JA02491

    ADS  Google Scholar 

  • Szego K, Young DT, Barraclough B, Berthelier JJ, Coates AJ, McComas DJ, Crary FJ, Dougherty MK, Erdos G, Gurnett DA, Kurth WS, Thomsen MF (2003) Cassini plasma spectrometer measurements of Jovian bow shock structure. J Geophys Res 108:1287. doi:10.1029/2002JA009517

    Google Scholar 

  • Tsyganenko NA (1995) Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J Geophys Res 100:5599–5612. doi:10.1029/94JA03193

    ADS  Google Scholar 

  • Walker RJ, Joy SP, Kivelson MG, Khurana K, Ogino T, Fukuzawa K (2005) The locations and shapes of Jupiter’s bow shock and magnetopause. In: Li G, Zank GP, Russell CT (eds) The physics of collisionless shocks. AIP conf proc, vol 781, pp 95–108

    Google Scholar 

  • Wallis MK (1973a) Solar wind interaction with H20 comets. Astron Astrophys 29:29–36

    ADS  Google Scholar 

  • Wallis MK (1973b) Weakly-shocked flows of the solar wind plasma through atmospheres of comets and planets. Planet Space Sci 21:1647–1660. doi:10.1016/0032-0633(73)90156-6

    ADS  Google Scholar 

  • Williams DJ, McEntire RW, Krimigis SM, Roelof EC, Jaskulek S, Tossman B, Wolken B, Armstrong TP, Fritz TA, Stuedemann W (1991) Energetic particles at Venus – Galileo results. Science 253:1525–1528. doi:10.1126/science.253.5027.1525

    ADS  Google Scholar 

  • Wolfe JH, Intriligator DS, Mihalov J, Collard H (1979) Initial observations of the Pioneer Venus orbiter solar wind plasma experiment. Science 203:750–752. doi:10.1126/science.203.4382.750

    ADS  Google Scholar 

  • Wolfe JH, Mihalov JD, Collard HR, McKibbin DD, Frank LA, Intriligator DS (1980) Preliminary results on the plasma environment of Saturn from the Pioneer 11 plasma analyzer experiment. Science 207:403–407. doi:10.1126/science.207.4429.403

    ADS  Google Scholar 

  • Zhang TL, Delva M, Baumjohann W, Volwerk M, Russell CT, Barabash S, Balikhin M, Pope S, Glassmeier KH, Wand C, Kudela K (2008) Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planet Space Sci 56:790–795. doi:10.1016/j.pss.2007.10.013

    ADS  Google Scholar 

  • Zurbuchen TH, Taines JM, Gloeckler G, Krimigis SM, Slavin JA, Koehn PL, Killen RM, Sprague AL, McNutt RL, Solomon SC (2008) MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science 321:90–93. doi:10.1126/science.1159314

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balogh, A., Treumann, R.A. (2013). Planetary Bow Shocks. In: Physics of Collisionless Shocks. ISSI Scientific Report Series, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6099-2_10

Download citation

Publish with us

Policies and ethics