Skip to main content

Regulation of Taurine Release in the Hippocampus of Developing and Adult Mice

  • Conference paper
  • First Online:
Taurine 8

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 775))

Abstract

Taurine release in mouse hippocampal slices is regulated by several neurotransmitter receptor systems. The ionotropic glutamate receptors and the adenosine receptor A1 are the most effective. The effect of N-methyl-d-aspartate receptors is mediated via activation of the pathway involving nitric oxide and 3′,5′-cyclic guanosine monophosphate. The activation of excitatory amino acid receptors causes at the same time an increase in taurine release. The activation of adenosine A1 receptors also potentiates taurine release. The taurine released may counteract any excitotoxic effects of glutamate, particularly in the developing hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

2-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate

8-Br-cGMP:

8-Bromoguanosine 3′,5′-cyclic monophosphate

CACA:

Cis-4-aminocrotonate

cGMP:

3′,5′-Cyclic guanosine monophosphate

CGS 21680:

2-p-(2-Carboxyethyl)phenylamino-5′-N-ethylcarboxaminoadenosine hydrochloride

CHA:

N 6-Cyclohexyladenosine

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

DMPX:

3,7-Dimethyl-1-propargylxanthine

GABA:

γ-Aminobutyrate

NBQX:

2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide

MK-801:

[5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine)

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

R-PIA:

R(−)N 6-(2-Phenylisopropyl)adenosine

TACA:

Trans-4-aminocrotonate

TPMPA:

(1,2,5,6-Tetrahydro-pyridine-4-yl)methylphosphinate

ZAPA:

(Z)-3-[(Aminoiminomethyl)thioprop-2-enoate

References

  • Allan RD, Dickenson HW, Duke RK, Johnston GAR (1991) ZAPA, a substrate for the neuronal high affinity GABA uptake system in rat brain slices. Neurochem Int 18:63–67

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Bredt SD, Ferris CD, Snyder SG (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase, identification of flavin and calmodulin binding sites. J Biol Chem 267:10976–10981

    Google Scholar 

  • Bruhwyler J, Chleide E, Liègeois J, Carrer F (1993) Nitric oxide: a new messenger in the brain. Neurosci Biobehav Rev 17:373–384

    Article  PubMed  CAS  Google Scholar 

  • Burke SP, Nadler JV (1988) Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51:1541–1551

    Article  PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GAR (1997) Stimulation of [3H]GABA and β-[3H]alanine release from rat brain slices by cis-4-aminocrotonic acid. J Neurochem 68:786–794

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  PubMed  CAS  Google Scholar 

  • DeMaster EG, Raij L, Archer SL, Weir EK (1989) Hydroxylamine is a vasorelaxant and a possible intermediate in the oxidative conversion of L-arginine to nitric oxide. Biochem Biophys Res Commun 163:527–533

    Article  PubMed  CAS  Google Scholar 

  • East SJ, Garthwaite J (1991) NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci Lett 123:17–19

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130–134

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsáki G (1988) Alterations in excitatory and GABAergic inhibitory connections in hippocampal transplants. Neuroscience 27:373–385

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Cs L, Lübbers K, Oertel WH (1984) Commissural afferents innervate glutamate decarboxylase immunoreactive non-pyramidal neurons in the guinea-pig hippocampus. Neurosci Lett 46:137–143

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  PubMed  CAS  Google Scholar 

  • Kontro P, Oja SS (1987) Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Brain Res 465:277–291

    PubMed  CAS  Google Scholar 

  • Magnusson KR, Koerner JF, Larson AA, Smullin DH, Skilling SR, Beitz AJ (1991) NMDA-, kainate- and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippocampal slices. Brain Res 549:1–8

    Article  PubMed  CAS  Google Scholar 

  • Oja SS, Kontro P (1983) Taurine. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn, vol. 3, Plenum Press, New York, pp 501–533

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA (1999) Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. Eur J Pharmacol 375:101–113

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (1991) Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice. Neuroscience 45:509–523

    Article  Google Scholar 

  • Saransaari P, Oja SS (1997) Taurine release from the developing and ageing hippocampus: stimulation by agonists of ionotropic glutamate receptors. Mech Ageing Dev 99:219–232

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (1998) Release of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from adult and developing mice in cell-damaging conditions. Neurochem Res 23:567–574

    Article  Google Scholar 

  • Saransaari P, Oja SS (1999a) Involvement of metabotropic glutamate receptors in taurine release in the adult and developing mouse hippocampus. Amino Acids 16:165–179

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (1999b) Taurine release modified by nitric oxide-generating compounds in the developing and adult mouse hippocampus. Neuroscience 89:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (2000a) Taurine release modified by GABAergic agents in hippocampal slices from adult and developing mice. Amino Acids 18:17–30

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (2000b) Modulation of the ischemia-induced taurine release by adenosine receptors in the developing and adult mouse hippocampus. Neuroscience 97:426–430

    Article  Google Scholar 

  • Saransaari P, Oja SS (2002) Taurine release in the developing and adult mouse hippocampus: involvement of cyclic guanosine monophosphate. Neurochem Res 27:15–20

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (2008) Taurine in neurotransmission. In: Vizi ES (ed) Handbook of neurochemistry and molecular neuroscience, 3rd edn, Neurotransmitter systems. Springer, New York, pp 325–342

    Chapter  Google Scholar 

  • Saransaari P, Oja SS (2010) Modulation of taurine release in ischemia by glutamate receptors in mouse brain stem slices. Amino Acids 38:739–746

    Article  PubMed  CAS  Google Scholar 

  • Schuman ER, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183

    Article  PubMed  CAS  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  • Taber KH, Lin C-T, Liu J-W, Thalmann R, Wu J-Y (1986) Taurine in hippocampus: localization and postsynaptic action. Brain Res 386:113–121

    Article  PubMed  CAS  Google Scholar 

  • Trenkner E (1990) The role of taurine and glutamate during early postnatal cerebellar development of normal and weaver mutant mice. Adv Exp Med Biol 268:239–244

    PubMed  CAS  Google Scholar 

  • Yoon KW, Rothman SM (1991) Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J Neurosci 11:1375–1380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo S. Oja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Oja, S.S., Saransaari, P. (2013). Regulation of Taurine Release in the Hippocampus of Developing and Adult Mice. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_11

Download citation

Publish with us

Policies and ethics