Skip to main content

Closed-Loop Bidirectional Neuroprosthetic Systems

  • Living reference work entry
  • First Online:
Handbook of Biochips

Abstract

In recent years, electrical stimulation has been an attractive alternative for treating several neural disorders. The delivery of electrical stimulation can be controlled by either an open-loop or a closed-loop manner. Currently, most commercial systems adopt the open-loop approach to control neural stimulation, but open-loop control has been found to become less or even adverse effective in the long term. In addition, a fully implantable, closed-loop system is desirable in most applications, so as to treat or to monitor a disease for a long term with minimum risk of postoperative infection. Therefore, this chapter first introduces the advantages of closed-loop control over open-loop control. The design considerations of a fully implantable, closed-loop systems are then described and compared for different applications. As the closed-loop control can be achieved by either an embedded or external microprocessor, the advantages of different architecture are further discussed. Finally, two examples are introduced to exemplify different design requirements and considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190

    Article  Google Scholar 

  • Aouizerate B, Cuny E, Martin-Guehl C et al (2004) Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg 101(4):682–686

    Article  Google Scholar 

  • Berger TW, Ahuja A, Courellis SH et al (2005) Restoring lost cognitive function. IEEE Eng Med Biol Mag 24(5):30–44

    Article  Google Scholar 

  • Berger TW, Gerhardt G, Liker MA et al (2008) The impact of neurotechnology on rehabilitation. IEEE Rev Biomed Eng 1:157–197

    Article  Google Scholar 

  • Berger TW, Hampson RE, Song D et al (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):1–11

    Article  MATH  Google Scholar 

  • Boger AS, Bhadra N, Gustafson KJ (2012) High frequency sacral root nerve block allows bladder voiding. Neurourol Urodyn 31(5):677–682

    Article  Google Scholar 

  • Boyer S, Sawan M et al (2000) Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. IEEE Trans Rehabil Eng 8(4):464–470

    Article  Google Scholar 

  • Bragin A, Hetke J, Wilson CL et al (2000) Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification. J Neurosci Methods 98:77–82

    Article  Google Scholar 

  • Chen W-M, Chiueh H, Chen T-J et al (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid-State Circ 49(1):232–247

    Article  Google Scholar 

  • Coulombe J, Sawan M (2004) An implant for a visual cortical stimulator. In: CDEN biomimetics symposium, Montreal, Sept 2004

    Google Scholar 

  • Fan Q, Member S, Sebastiano F et al (2011) A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J Solid-State Circ 46(7):1534–1543

    Article  Google Scholar 

  • Green AM, Kalaska JF (2011) Learning to move machines with the mind. Trends Neurosci 34(2):61–75

    Article  Google Scholar 

  • Halperin D, Kohno T, Heydt-Benjamin TS et al (2008) Security and privacy for implantable medical devices. IEEE Pervasive Comput 7(1):30–39

    Article  Google Scholar 

  • Harrison RR (2007) A versatile integrated circuit for the acquisition of biopotentials. In: 2007 I.E. Custom Integrated Circuits Conference, San Jose, California, pp 115–122

    Google Scholar 

  • Harrison RR, Charles C, Member S (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circ 38(6):958–965

    Article  Google Scholar 

  • Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266

    Article  Google Scholar 

  • Hochberg LR, Donoghue JP (2006) Sensors for brain-computer interfaces. IEEE Eng Med Biol Mag 25(5):32–38

    Article  Google Scholar 

  • Kaula NF, Mihran R, Woloszko J (1996) Charge and impedance analysis of 4500/plus hours of electrical stimulation of sacral roots with a foramen electrode implant. In: Annual international conference of the Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, pp 341–342, Oct 1996

    Google Scholar 

  • Kiani M, Ghovanloo M (2010) An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Tran Circ Syst II: Express Briefs 57(4):260–264

    Article  Google Scholar 

  • Lee S-Y, Su M-Y, Liang M-C et al (2011) A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans Biomed Circ Syst 5(6):511–522

    Google Scholar 

  • Majerus SJA, Fletter PC, Damaser MS et al (2011) Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Trans Biomed Eng 58(3):763–767

    Article  Google Scholar 

  • Mounaïm F, Elzayat E, Sawan M et al (2010) New neurostimulation and blockade strategy to reduce sphincter resistance in spinalized dogs. J Contemp Eng Sci 3(7):321–337

    Google Scholar 

  • Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat Rev Neurosci 10:530–540

    Article  Google Scholar 

  • Oluigbo CO, Salma A, Rezai AR (2012) Deep brain stimulation for neurological disorders. IEEE Rev Biomed Eng 5:88–99

    Article  Google Scholar 

  • Santaniello S, Fiengo G, Glielmo L et al (2011) Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans Neural Syst Rehabil Eng 19(1):15–24

    Article  Google Scholar 

  • Sawan M (2004) Microsystems dedicated to wireless multichannel monitoring and microstimulation: design, test and packaging. In: International Conference on Solid-State and Integrated Circuits Technology, Alexandria, EGYPT, pp 1408–1411, Oct 2004

    Google Scholar 

  • Scherberger H (2009) Neural control of motor prostheses. Curr Opin Neurobiol 19:629–633

    Article  Google Scholar 

  • Schmidt EM, Bak MJ, Hambrecht FT et al (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(2):507–522

    Article  Google Scholar 

  • Stanslaski S, Pedram A, Cong P et al (2012) Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng 20(4):410–421

    Article  Google Scholar 

  • Steve JAM, Steven LG, Michael AS et al (2012) Wireless, ultra-Low-power implantable sensor for chronic bladder pressure monitoring. J Emerg Technol Comput Syst 8(2):11

    Google Scholar 

  • Stokes K (1996) Cardiac pacing electrodes. Proc IEEE 84(3):457–467

    Article  Google Scholar 

  • Sugimachi M, Sunagawa K (2009) Bionic cardiology: exploration into a wealth of controllable body parts in the cardiovascular system. IEEE Rev Biomed Eng 2:172–186

    Article  Google Scholar 

  • Tariqus-Salam M, Sawan M, Nguyen D (2012) Implantable closed-loop epilepsy prosthesis: modeling, implementation and validation. J Emerg Technol Comput 8(2):9

    Google Scholar 

  • Verma N, Shoeb A, Bohorquez J et al (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circ 45(4):804–816

    Article  Google Scholar 

  • Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21(1):6–17

    Article  Google Scholar 

  • Webster JG (1992) Medical instrumentation: application and design, 2nd edn. Houghton Mifflin, Boston

    Google Scholar 

  • Yoo HJ, van Hoof C (2010) Bio-medical CMOS Ics (integrated circuits and systems). Springer, New York

    Google Scholar 

  • Young C-P, Liang S-F, Chang D-W (2011) A portable wireless online closed-loop seizure controller in freely moving rats. IEEE Trans Instrum Meas 60(2):513–521

    Article  Google Scholar 

  • Li Y-T, Chen J-J, Chen L-T et al (2012) Wireless implantable biomicrosystem for bladder pressure monitoring and nerve stimulation. In: IEEE Biomedical Circuits and Systems Conference, Hsinchu, Taiwan, pp 296–299, Nov 2012

    Google Scholar 

  • Zierhofer CM, Hochmair-Desoyer IJ, Hochmair ES (1995) Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans Rehabil Eng 3:112–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kea-Tiong (Samuel) Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Tang, KT.(., Chen, H., Lin, YP. (2015). Closed-Loop Bidirectional Neuroprosthetic Systems. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics