Skip to main content

Carbohydrate Analysis and Embryo Viability

  • Chapter
  • First Online:
Book cover Human Gametes and Preimplantation Embryos
  • 1308 Accesses

Abstract

The capacity to be able to rank embryos in a quantitative fashion in the laboratory is highly sought after with many different approaches being tried, both refining morphological assessments that have been used for many years as well as the development and adoption of new technologies either genomic, transcriptomic, proteomic, and metabolic approaches. Carbohydrate metabolism of the embryo, particularly the later stage embryo, is an attractive option as it is noninvasive, provides measures post-embryonic genome activation thereby including aspects of maternal and paternal genomes, and can easily be performed in the timeframe required for a fresh transfer. Animal studies highlight carbohydrate metabolism as an important feature in viability, and recent human studies have shown similar promise. The advent of platforms such as lab-on a-chip technologies should enable integration of technology in laboratories and facilitate large multicenter randomized controlled trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dumollard R, Duchen M, Sardet C. Calcium signals and mitochondria at fertilisation. Semin Cell Dev Biol. 2006;17:314–23.

    Article  PubMed  CAS  Google Scholar 

  2. Jones KT. Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction. 2005;130:813–23.

    Article  PubMed  CAS  Google Scholar 

  3. Schultz RM. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update. 2002;8:323–31.

    Article  PubMed  CAS  Google Scholar 

  4. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  PubMed  CAS  Google Scholar 

  5. Lane M, Gardner DK. Blastomere homeostasis. In: Gardner DK, Lane M, editors. Art and the human blastocyst. Boston: Serono Symposia; 2001. p. 69–90.

    Chapter  Google Scholar 

  6. Lane M, Baltz JM, Bavister BD. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol Reprod. 1998;59:1483–90.

    Article  PubMed  CAS  Google Scholar 

  7. Lane M, Baltz JM, Bavister BD. Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of the hamster. Biol Reprod. 1999;61:452–7.

    Article  PubMed  CAS  Google Scholar 

  8. Phillips KP, Baltz JM. Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. Dev Biol. 1999;208:392–405.

    Article  PubMed  CAS  Google Scholar 

  9. Nasr-Esfahani MH, Winston NJ, Johnson MH. Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil. 1992;96:219–31.

    Article  PubMed  CAS  Google Scholar 

  10. Nasr-Esfahani MM, Johnson MH. The origin of reactive oxygen species in mouse embryos cultured in vitro. Development. 1991;113:551–60.

    PubMed  CAS  Google Scholar 

  11. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online. 2010;21:402–10.

    Article  PubMed  CAS  Google Scholar 

  12. Lane M, Gardner DK. Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med. 2000;18:195–204.

    Article  PubMed  CAS  Google Scholar 

  13. Watson AJ, Kidder GM. Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Dev Biol. 1988;126:80–90.

    Article  PubMed  CAS  Google Scholar 

  14. Gott AL, Hardy K, Winston RM, Leese HJ. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5:104–8.

    PubMed  CAS  Google Scholar 

  15. Hardy K, Hooper MA, Handyside AH, Rutherford AJ, Winston RM, Leese HJ. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4:188–91.

    PubMed  CAS  Google Scholar 

  16. Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76:1175–80.

    Article  PubMed  CAS  Google Scholar 

  17. Jansen S, Cashman K, Thompson JG, Pantaleon M, Kaye PL. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. Reproduction. 2009;138:493–505.

    Article  PubMed  CAS  Google Scholar 

  18. Pantaleon M, Scott J, Kaye PL. Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod. 2008;78:595–600.

    Article  PubMed  CAS  Google Scholar 

  19. Gardner DK, Leese HJ. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil. 1990;88:361–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lane M, Gardner DK. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod. 1998;13:991–7.

    Article  PubMed  CAS  Google Scholar 

  21. Hewitson LC, Leese HJ. Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. J Exp Zool. 1993;267:337–43.

    Article  PubMed  CAS  Google Scholar 

  22. Hewitson LC, Martin KL, Leese HJ. Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev. 1996;43:323–30.

    Article  PubMed  CAS  Google Scholar 

  23. Menke TM, McLaren A. Mouse blastocysts grown in vivo and in vitro: carbon dioxide production and trophoblast outgrowth. J Reprod Fertil. 1970;23:117–27.

    Article  PubMed  CAS  Google Scholar 

  24. Renard JP, Philippon A, Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil. 1980;58:161–4.

    Article  PubMed  CAS  Google Scholar 

  25. Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242:103–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gardner DK, Larman MG, Thouas GA. Sex-related physiology of the preimplantation embryo. Mol Hum Reprod. 2010;16:539–47.

    Article  PubMed  CAS  Google Scholar 

  27. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11:1975–8.

    Article  PubMed  CAS  Google Scholar 

  28. Leese HJ. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012;143:417–27.

    Article  PubMed  CAS  Google Scholar 

  29. Conaghan J, Hardy K, Handyside AH, Winston RM, Leese HJ. Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet. 1993;10:21–30.

    Article  PubMed  CAS  Google Scholar 

  30. Turner K, Martin KL, Woodward BJ, Lenton EA, Leese HJ. Comparison of pyruvate uptake by embryos derived from conception and non-conception natural cycles. Hum Reprod. 1994;9:2362–6.

    PubMed  CAS  Google Scholar 

  31. Gardner DK. Analysis of embryo metabolism and the metabolome to identify the most viable embryo within a cohort. In: Gardner DK, Risk RMB, Falcone T, editors. Human assisted reproductive technology: future trends in laboratory ad clinical practice. Cambridge: Cambridge University Press; 2011. p. 301–12.

    Chapter  Google Scholar 

  32. Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein CJ, Smith S, Travis B, Tucker G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature. 1978;274:500–3.

    Article  PubMed  CAS  Google Scholar 

  34. Gardner DK, Pool TB, Lane M. Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin Reprod Med. 2000;18:205–18.

    Article  PubMed  CAS  Google Scholar 

  35. Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17:371–8.

    Article  PubMed  CAS  Google Scholar 

  36. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  PubMed  CAS  Google Scholar 

  37. Wale PL, Gardner DK. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol Reprod. 2012;87(1):24.

    Article  PubMed  Google Scholar 

  38. Urbanski JP, Johnson MT, Craig DD, Potter DL, Gardner DK, Thorsen T. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal Chem. 2008;80:6500–7.

    Article  PubMed  CAS  Google Scholar 

  39. Heo YS, Cabrera LM, Bormann CL, Smith GD, Takayama S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip. 2012;12:2240–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lane, M., Gardner, D.K. (2013). Carbohydrate Analysis and Embryo Viability. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics