Skip to main content

Microfluidic Devices for the Analysis of Gamete and Embryo Physiology

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos

Abstract

Microfluidic technology provides a unique means of interfacing known analytical methods for embryo developmental physiology and molecular phenotypes in real time. Proof of concept devices have been demonstrated for quantitation of all relevant biological parameters, with commercial translation more prevalent for genomic and proteomic detection, wherein microfluidic devices might form the next generation of PGS technologies. While poly(dimethyl)siloxane devices are amenable to culture and microscopic visualization of growing embryos, there is still no easily implemented substitute for standard incubation techniques, although there is the very real prospect of integration of a microfluidic device for morphokinetic analysis, as an adjunct to time-lapse imaging. It may still be some time before the wealth of experimental concepts in microfluidic sciences are translated into a clinically relevant diagnostic tool for IVF, but these should provide a gateway to future devices with more automation and less user intervention, to systematize assisted reproductive technology laboratories. An ideal device could be an active, continuous culture platform with integrated time-lapse imaging and metabolomic or secretomic endpoints, providing real-time physiological outputs as the embryo develops, as well as sampling for interface with more detailed molecular analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature. 2005;437(7059):648–55.

    Article  PubMed  CAS  Google Scholar 

  2. DeMello AJ. Control and detection of chemical reactions in microfluidic systems. Nature. 2006;442(7101):394–402.

    Article  PubMed  CAS  Google Scholar 

  3. Szekely L, Guttman A. New advances in microchip fabrication for electrochromatography. Electrophoresis. 2005;26(24):4590–604.

    Article  PubMed  CAS  Google Scholar 

  4. Weibel DB, Diluzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol. 2007;5(3):209–18.

    Article  PubMed  CAS  Google Scholar 

  5. Wang JD et al. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng. 2012;40:1862–73.

    Article  PubMed  Google Scholar 

  6. Regehr KJ et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip. 2009;9(15):2132–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lee CY et al. Microfluidic mixing: a review. Int J Mol Sci. 2011;12(5):3263–87.

    Article  PubMed  CAS  Google Scholar 

  8. Heng X et al. Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip. 2006;6(10):1274–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cui X et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc Natl Acad Sci USA. 2008;105(31):10670–5.

    Article  PubMed  CAS  Google Scholar 

  10. Lee LM, Cui X, Yang C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed Microdevices. 2009;11:951–8.

    Article  PubMed  CAS  Google Scholar 

  11. Cho SH et al. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (microFACS). Lab Chip. 2010;10(12):1567–73.

    Article  PubMed  CAS  Google Scholar 

  12. Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater. 2003;2(11):715–25.

    Article  PubMed  CAS  Google Scholar 

  13. Burg TP et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 2007;446(7139):1066–9.

    Article  PubMed  CAS  Google Scholar 

  14. Grover WH et al. Measuring single-cell density. Proc Natl Acad Sci USA. 2011;108(27):10992–6.

    Article  PubMed  CAS  Google Scholar 

  15. Hwang H et al. Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics. 2009;3(1):14103.

    Article  PubMed  Google Scholar 

  16. Lane M et al. Assessment of metabolism of equine morulae and blastocysts. Mol Reprod Dev. 2001;59(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  17. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007;3(4):413–38.

    Article  PubMed  Google Scholar 

  18. Wan J, Ristenpart WD, Stone HA. Dynamics of shear-induced ATP release from red blood cells. Proc Natl Acad Sci USA. 2008;105(43):16432–7.

    Article  PubMed  CAS  Google Scholar 

  19. Palermo GD et al. Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection. Hum Reprod. 1996;11(1):172–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ebner T et al. Developmental competence of oocytes showing increased cytoplasmic viscosity. Hum Reprod. 2003;18(6):1294–8.

    Article  PubMed  CAS  Google Scholar 

  21. Xie Y et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod. 2006;75(1):45–55.

    Article  PubMed  CAS  Google Scholar 

  22. Kim MS et al. A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis. 2009;30(18):3276–82.

    Article  PubMed  CAS  Google Scholar 

  23. Saiki RK et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  PubMed  CAS  Google Scholar 

  24. Telenius H et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.

    Article  PubMed  CAS  Google Scholar 

  25. Steuerwald NM et al. Maternal age-related differential global expression profiles observed in human oocytes. Reprod Biomed Online. 2007;14(6):700–8.

    Article  PubMed  CAS  Google Scholar 

  26. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen AS et al. High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides: retention manipulation via micellar solutions and metal additives. Anal Chem. 1987;59(7):1021–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rusk N. Torrents of sequence. Nat Methods. 2011;8(1):44.

    Google Scholar 

  29. Njoroge SK et al. Integrated microfluidic systems for DNA analysis. Top Curr Chem. 2011;304:203–60.

    Article  PubMed  CAS  Google Scholar 

  30. Sieben VJ et al. FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol. 2007;1(3):27–35.

    Article  PubMed  CAS  Google Scholar 

  31. Sieben VJ et al. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip. 2008;8(12):2151–6.

    Article  PubMed  CAS  Google Scholar 

  32. Vedarethinam I et al. Metaphase FISH on a chip: miniaturized microfluidic device for fluorescence in situ hybridization. Sensors (Basel). 2010;10(11):9831–46.

    Article  CAS  Google Scholar 

  33. Wang X et al. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization. Biomed Microdevices. 2012;14(3):443–51.

    Article  PubMed  CAS  Google Scholar 

  34. Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem. 2007;79(19):7576–9.

    Article  PubMed  CAS  Google Scholar 

  35. Lee HJ et al. Electrochemical cell lysis device for DNA extraction. Lab Chip. 2009;10(5):626–33.

    Article  PubMed  Google Scholar 

  36. Vulto P et al. A microfluidic approach for high efficiency extraction of low molecular weight RNA. Lab Chip. 2010;10(5):610–6.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y et al. An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomed Microdevices. 2010;12(6):1043–9.

    Article  PubMed  CAS  Google Scholar 

  38. Boles DJ et al. Droplet-based pyrosequencing using digital microfluidics. Anal Chem. 2011;83(22):8439–47.

    Article  PubMed  CAS  Google Scholar 

  39. Pieprzyk M, High H. Fluidigm dynamic arrays provide a platform for single cell gene expression analysis. 2009. Nat. Meth. 6 (iii–iv)

    Google Scholar 

  40. Guo G et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18(4):675–85.

    Article  PubMed  CAS  Google Scholar 

  41. May A et al. Multiplex rt-PCR expression analysis of developmentally important genes in individual mouse preimplantation embryos and blastomeres. Biol Reprod. 2009;80(1):194–202.

    Article  PubMed  CAS  Google Scholar 

  42. Morrill BH et al. Use of nanofluidic RT quantitative polymerase chain reaction to study variation in gene expression between single bovine oocyte and blastocyst samples. Reprod Fertil Dev. 2011;24(1):180–1.

    Article  Google Scholar 

  43. Katz-Jaffe MG et al. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.

    Article  PubMed  CAS  Google Scholar 

  44. Latham KE et al. Analysis of embryonic mouse development: construction of a high-resolution, two-dimensional gel protein database. Appl Theor Electrophor. 1992;2(6):163–70.

    PubMed  CAS  Google Scholar 

  45. Shi CZ et al. Protein databases for compacted eight-cell and blastocyst-stage mouse embryos. Mol Reprod Dev. 1994;37(1):34–47.

    Article  PubMed  CAS  Google Scholar 

  46. Anderiesz C et al. Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro. Hum Reprod. 2000;15(5):1140–8.

    Article  PubMed  CAS  Google Scholar 

  47. Navarrete Santos A et al. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction. 2004;128(5):503–16.

    Article  PubMed  Google Scholar 

  48. Wang Y et al. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril. 2005;83 Suppl 1:1144–54.

    Article  PubMed  CAS  Google Scholar 

  49. Goldbard SB, Gollnick SO, Warner CM. A highly sensitive method for the detection of cell surface antigens on preimplantation mouse embryos. J Immunol Methods. 1984;68(1–2):137–46.

    Article  PubMed  CAS  Google Scholar 

  50. Noci I et al. Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod. 2005;20(1):138–46.

    Article  PubMed  CAS  Google Scholar 

  51. Mains LM et al. Identification of apolipoprotein A1 in the human embryonic secretome. Fertil Steril. 2011;96(2):422–7 e2.

    Article  PubMed  CAS  Google Scholar 

  52. Katz-Jaffe MG et al. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905.

    Article  PubMed  CAS  Google Scholar 

  53. Angelucci S et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta. 2006;1764(11):1775–85.

    Article  PubMed  CAS  Google Scholar 

  54. Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85.

    Article  PubMed  CAS  Google Scholar 

  55. Beardsley AJ, Li Y, O’Neill C. Characterization of a diverse secretome generated by the mouse preimplantation embryo in vitro. Reprod Biol Endocrinol. 2010;8:71.

    Article  PubMed  Google Scholar 

  56. Cortezzi SS et al. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gao J et al. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem. 2001;73(11):2648–55.

    Article  PubMed  CAS  Google Scholar 

  58. Herrmann M, Veres T, Tabrizian M. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip. 2006;6(4):555–60.

    Article  PubMed  CAS  Google Scholar 

  59. Hoegger D et al. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal Bioanal Chem. 2007;387(1):267–75.

    Article  PubMed  CAS  Google Scholar 

  60. Xue Q et al. Multiplexed enzyme assays in capillary electrophoretic single-use microfluidic devices. Electrophoresis. 2001;22(18):4000–7.

    Article  PubMed  CAS  Google Scholar 

  61. Chen SH et al. A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis. 2001;22(18):3972–7.

    Article  PubMed  CAS  Google Scholar 

  62. Wheeler AR et al. Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2004;76(16):4833–8.

    Article  PubMed  CAS  Google Scholar 

  63. Young JB, Li L. An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS. J Am Soc Mass Spectrom. 2006;17(3):325–34.

    Article  PubMed  CAS  Google Scholar 

  64. Goluch ED et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip. 2006;6(10):1293–9.

    Article  PubMed  CAS  Google Scholar 

  65. Jebrail MJ, et al. Digital microfluidics for automated proteomic processing. J Vis Exp. 2009(33).

    Google Scholar 

  66. Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  67. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20(1):9–18.

    Article  PubMed  Google Scholar 

  68. Gardner DK et al. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26(8):1981–6.

    Article  PubMed  CAS  Google Scholar 

  69. Thouas GA, Gardner DK. Metabolomic profiling for selection of the most viable clinical IVF embryo. Curr Women’s Health Rev. 2010;6:254–60.

    Article  Google Scholar 

  70. Urbanski JP et al. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal Chem. 2008;80(17):6500–7.

    Article  PubMed  CAS  Google Scholar 

  71. Heo YS et al. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip. 2012;12(12):2240–6.

    Article  PubMed  CAS  Google Scholar 

  72. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14(12):679–90.

    Article  PubMed  CAS  Google Scholar 

  73. Utz M, Landers J. Chemistry. Magnetic resonance and microfluidics. Science. 2010;330(6007):1056–8.

    Article  PubMed  CAS  Google Scholar 

  74. Greener J, Abbasi B, Kumacheva E. Attenuated total reflection Fourier transform infrared spectroscopy for on-chip monitoring of solute concentrations. Lab Chip. 2010;10(12):1561–6.

    Article  PubMed  CAS  Google Scholar 

  75. D’Alessandro A et al. A mass spectrometry-based targeted metabolomics strategy of human blastocoele fluid: a promising tool in fertility research. Mol Biosyst. 2012;8(4):953–8.

    Article  PubMed  Google Scholar 

  76. Gopichandran N, Leese HJ. Metabolic characterization of the bovine blastocyst, inner cell mass, trophectoderm and blastocoel fluid. Reproduction. 2003;126(3):299–308.

    Article  PubMed  CAS  Google Scholar 

  77. Wei H et al. Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device. Anal Chem. 2011;83(24):9306–13.

    Article  PubMed  CAS  Google Scholar 

  78. Chen Q et al. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem. 2012;84(3):1695–701.

    Article  PubMed  CAS  Google Scholar 

  79. Lee J, Soper SA, Murray KK. Microfluidics with MALDI analysis for proteomics—a review. Anal Chim Acta. 2009;649(2):180–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Thouas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thouas, G.A., Potter, D.L., Gardner, D.K. (2013). Microfluidic Devices for the Analysis of Gamete and Embryo Physiology. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics