Skip to main content

Morphological Assessment of Blastocyst Stage Embryos: Types of Grading Systems and Their Reported Outcomes

  • Chapter
  • First Online:

Abstract

The benefits of single embryo transfer (SET) to mother and baby are well documented and SET is rapidly becoming the standard of care for several groups of patients, especially those <38 and oocyte donor programs. The advantages of blastocyst transfer have been well argued and growing data supports the move to day 5 transfer as an effective means of moving to SET while the transfer of embryos at the blastocyst stage has been shown to not only increase implantation rates, but decrease pregnancy losses. Given the high implantation potential of human blastocysts, and that when more than one blastocyst is transferred the incidence of twins is typically around 50 %, it is paramount that effective selection criteria are used to identify the blastocyst with the best chance of resulting in a pregnancy. Utilization of omics-based technologies in clinical in vitro fertilization (IVF) applications has reported promising results, and the analysis of the proteome/secretome, together with an increased understanding of the complex relationships regulating the metabolome, continues to be extremely valuable. However, there are still no routinely applicable techniques or analytical devices available and the omics-based technologies tend to reside in a few selected research laboratories. Consequently, IVF clinics worldwide continue to select embryos for transfer based on their developmental rate and morphological features as assessed by conventional light microscopy. It is envisaged that new suitable physiological-based tests will be used to augment morphometric analysis. The necessity for an accurate morphological grading system for blastocyst stage embryos predicting the implantation potential and the clinical outcome is evident. One of the clear advantages of examining the morphology of a blastocyst is that one can readily see the differentiation of the two cell types, the inner cells mass (ICM) and the trophectoderm (Td). This gives a distinct advantage over the analysis of cleavage stage morphology, as one can already determine whether the true embryonic tissue has formed successfully.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adashi EY, Barri PN, Berkowitz R, et al. Infertility therapy-associated multiple pregnancies (births): an ongoing epidemic. Reprod Biomed Online. 2003;7:515–42.

    Article  PubMed  Google Scholar 

  2. Menezo YJ, Guerin JF, Czyba JC. Improvement of human early embryo development in vitro by ­coculture on monolayers of Vero cells. Biol Reprod. 1990;42:301–6.

    Article  PubMed  CAS  Google Scholar 

  3. Bongso A, Ng SC, Fong CY, Ratnam S. Cocultures: a new lead in embryo quality improvement for assisted reproduction. Fertil Steril. 1991;56:179–91.

    PubMed  CAS  Google Scholar 

  4. Lopata A. The neglected human blastocyst. J Assist Reprod Genet. 1992;9:508–12.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner DK, Surrey E, Minjarez D, et al. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–5.

    Article  PubMed  CAS  Google Scholar 

  6. Papanikolaou EG, D’Haeseleer E, Verheyen G, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;20:3198–203.

    Article  PubMed  Google Scholar 

  7. Papanikolaou EG, Camus M, Kolibianakis EM, et al. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006;354:1139–46.

    Article  PubMed  CAS  Google Scholar 

  8. Papanikolaou EG, Camus M, Fatemi HM, et al. Early pregnancy loss is significantly higher after day 3 single embryo transfer than after day 5 single blastocyst transfer in GnRH antagonist stimulated IVF cycles. Reprod Biomed Online. 2006;12:60–5.

    Article  PubMed  CAS  Google Scholar 

  9. Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148.

    Article  PubMed  CAS  Google Scholar 

  10. Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1:63–72.

    Article  PubMed  CAS  Google Scholar 

  11. Pool TB. Recent advances in the production of viable human embryos in vitro. Reprod Biomed Online. 2002;4:294–302.

    Article  PubMed  Google Scholar 

  12. Gardner DK, Lane M. Embryo culture systems. In: Gardner DK, editor. In vitro fertilization a practical approach. New York: Informa Healthcare; 2007. p. 221–82.

    Google Scholar 

  13. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–53.

    PubMed  CAS  Google Scholar 

  14. Brison DR, Houghton FD, Falconer D, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19:2319–24.

    Article  PubMed  CAS  Google Scholar 

  15. Katz-Jaffe M, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86:678–85.

    Article  PubMed  CAS  Google Scholar 

  16. Larman M, Katz-Jaffe MG, Sheehan CB, Gardner DK. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod. 2007;22:250–9.

    Article  PubMed  CAS  Google Scholar 

  17. Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception (review). Cochrane Database Syst Rev. 2007;4:CD002118.

    PubMed  Google Scholar 

  18. Dokras A, Sargent I, Barlow D. Human blastocyst grading: an indicator of developmental potential? Hum Reprod. 1993;8:2119–27.

    PubMed  CAS  Google Scholar 

  19. Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R. Blastocyst quality affects the success of blastocyst stage embryo transfer. Fertil Steril. 2000;74:282–7.

    Article  PubMed  CAS  Google Scholar 

  20. Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006;85:559–63.

    Article  PubMed  Google Scholar 

  21. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: fertility and genetics beyond 1999. Camforth, UK: Parthenon Publishing; 1999. p. 378–88.

    Google Scholar 

  22. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.

    Article  PubMed  CAS  Google Scholar 

  23. Gardner DK, Stevens J, Sheehan CB, Schoolcraft WB. Morphological assessment of the human blastocyst. In: Elder K, Cohen J, editors. Analysis of the human embryo. New York.: Taylor & Francis; 2007. p. 79–87.

    Google Scholar 

  24. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81551–5.

    Article  PubMed  CAS  Google Scholar 

  25. Shapiro BS, Harris DC, Richter KS. Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertil Steril. 2000;73:582–6.

    Article  PubMed  CAS  Google Scholar 

  26. Zaninovic N, Berrios R, Clarke N, Bodine Z, Ye L, Veeck L. Blastocyst expansion, inner cell mass (ICM) formation, and trophoectoderm (TM) quality: is one more important for implantation? Fertil Steril. 2001;76:S8.

    Article  Google Scholar 

  27. Richter KS, Harris DC, Daneshmand ST, Sapiro BS. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril. 2001;76:1157–67.

    Article  PubMed  CAS  Google Scholar 

  28. Marek DE, Langley MT, Weiand AC, Nackley KM, Doody KJ. Blastocyst inner cell mass grade predicts outcome for single embryo transfer in fresh cycles. Fertil Steril. 2004;82:S0015–282.

    Google Scholar 

  29. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Thomas S. Large blastocyst diameter, early blastulation, and low preovulatory serum progesterone are dominant predictors of clinical pregnancy in fresh autologous cycles. Fertil Steril. 2008;90:302–9.

    Article  PubMed  Google Scholar 

  30. Rehman KS, Bukulmez O, Langley M, Carr BR, Nackley AC, Doody KM, et al. Late stages of embryo progression are a much better predictor of clinical pregnancy than early cleavage in intracytoplasmic sperm injection and in vitro fertilization cycles with blastocyst-stage transfer. Fertil Steril. 2007;87:1041–52.

    Article  PubMed  Google Scholar 

  31. Matsuura K, Hayashi N, Takiue C, et al. Blastocyst quality scoring based on morphologic grading correlates with cell number. Fertil Steril. 2010;94:1135–7.

    Article  PubMed  Google Scholar 

  32. Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophoectoderm morphology: an ­important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26:3289–96.

    Article  PubMed  CAS  Google Scholar 

  33. Alpha Scientists in Reproductive Medicine; ESHRE Special Interest Group Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22:632–646.

    Google Scholar 

  34. Alpha Scientists in Reproductive Medicine; ESHRE Special Interest Group Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–1283.

    Google Scholar 

  35. Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf. 1985;2:59–64.

    Article  PubMed  CAS  Google Scholar 

  36. Fehilly CB, Cohen J, Simons RF, Fishel SB, Edwards RG. Cryopreservation of cleaving embryos and expanded blastocysts in the human: a comparative study. Fertil Steril. 1985;44:638–44.

    PubMed  CAS  Google Scholar 

  37. Vanderzwalmen P, Bertin G, Debauche C, et al. Vitrification of human blastocysts with the Hemi-straws carrier: application of assisted hatching and thawing. Hum Reprod. 2003;18:1504–11.

    Article  PubMed  CAS  Google Scholar 

  38. Van den Abbeel E, Camus M, Verheyen G, et al. Slow controlled-rate freezing of sequentially cultured human blastocysts: an evaluation of two freezing strategies. Hum Reprod. 2005;20:2939–45.

    Article  PubMed  Google Scholar 

  39. Desai N, Goldfarb J. Examination of frozen cycles with replacement of a single thawed blastocyst. Reprod Biomed Online. 2005;11:349–54.

    Article  PubMed  Google Scholar 

  40. Shu Y, Watt J, Gerbardt J, Dasig J, Appling J, Behr B. The value of fast blastocoel re-expansion in the selection of a viable thawed blastocyst for transfer. Fertil Steril. 2009;91:401–6.

    Article  PubMed  Google Scholar 

  41. Balaban B, Urman B, Ata B, et al. A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism, and blastocyst formation. Hum Reprod. 2008;23:1976–82.

    Article  PubMed  CAS  Google Scholar 

  42. Stehlik E, Stehlik J, Katayama KP, Kuwayama M, Jambor V, Brohammer R, et al. Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod Biomed Online. 2005;11:53–7.

    Article  PubMed  Google Scholar 

  43. Ebner T, Vanderzwalmen P, Shebi O, Urdl W, Moser M, Zech NH, et al. Morphology of vitrified/warmed day-5 embryos predicts rates of implantation, pregnancy and live birth. Reprod Biomed Online. 2009;19:72–8.

    Article  PubMed  CAS  Google Scholar 

  44. Urman B, Yakin K, Ata B, Balaban B. How can we improve current blastocyst grading systems? Curr Opin Obstet Gynecol. 2007;19:273–8.

    Article  PubMed  Google Scholar 

  45. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remhi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basak Balaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balaban, B., Gardner, D.K. (2013). Morphological Assessment of Blastocyst Stage Embryos: Types of Grading Systems and Their Reported Outcomes. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics