Skip to main content

Heart Rate Asymmetry Analysis Using Poincaré Plot

  • Chapter
  • First Online:
Poincaré Plot Methods for Heart Rate Variability Analysis

Abstract

Physiological systems are inherently complex and subject to energy, entropy and information fluxes across their boundaries. These systems function in disequilibrium in healthy condition and their self-organizing capability is related to asymmetricity of the underlying processes (Costa et al., Phys. Rev. Lett. 95:1–4, 2005). In pathological perturbations, a loss of self-organizing capability associated with aging or disease is a function of loss of asymmetricity (Costa et al., Phys. Rev. Lett. 95:1–4, 2005). Intuitively, asymmetry refers to the lack of symmetry; in other words, the distribution of signals is imbalanced. This imbalance or dissimilarity can easily be observed in geometry of the phase space plots. Asymmetry is expected to be present in physiological systems (Chialvo and Millonas, Phys. Rev. Lett. 209:26–30, 1995) as it is the fundamental property of a non-equilibrium system (Prigogine and Antoniou, Ann. N. U. Acad. Sci. 879:8–28, 2007). Furthermore, asymmetry is linked with the time irreversibility, which is reported as highest in systems with healthy physiology (Costa et al., Phys. Rev. Lett. 95:1–4, 2005; Costa et al., Phys. Rev. Lett. 89:062102, 2002). Thus, asymmetry represents the presence of complex nonlinear dynamics in physiological signals. So far, very little work has been published in defining and measuring asymmetry in physiological signals (Piskorski and Guzik, Phys. Rev. Lett. 28:287–300, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, E. Piccaluga, Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2), 178–193 (1986)

    Article  PubMed  CAS  Google Scholar 

  2. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  3. P.W. Kamen, H. Krum, A.M. Tonkin. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. 91, 201–208 (1996)

    PubMed  CAS  Google Scholar 

  4. R.D. Berger, J.P. Saul, R.J. Cohen, Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am. J. Physiol. Heart Circ. Physiol. 256(1), H142–H152 (1989)

    CAS  Google Scholar 

  5. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Berger, R.J. Cohen, Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504), 220–222 (1981)

    Article  PubMed  CAS  Google Scholar 

  6. M.P. Tulppo, T.H. Makikallio, T.E.S. Takala, T. Seppanen, H.V. Huikuri,  Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271, H244–H252 (1996)

    PubMed  CAS  Google Scholar 

  7. M. Brennan, M. Palaniswami, P. Kamen, Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability. IEEE Trans. Biomed. Eng. 48, 1342–1347 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. U.R. Acharya, K.P. Joseph, N. Kannathal, C.M. Lim, J.S. Suri, Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  9. M. Toichi, T. Sugiura, T. Murai, A. Sengoku, A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of r-r interval. J. Auton. Nerv. Syst. 62, 79–84 (1997)

    Article  PubMed  CAS  Google Scholar 

  10. A. Rosenblueth,  F.A. Simeone, The interrelations of vagal and accelerator effects on the cardiac rate. Am. J. Physiol. 110, 42–55 (1934)

    Google Scholar 

  11. J. Hayano, Y. Sakakibara, A. Yamada, Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol. 67, 199–204 (1991)

    Article  PubMed  CAS  Google Scholar 

  12. M.. La Rovere, A. Mortara, P. Pantaleo, R. Maestri, F. Cobelli, L. Tavazzi, Scopolamine improves autonomic balance in advanced congestive heart failure. Circulation 90(2), 838–843 (1994)

    Article  PubMed  Google Scholar 

  13. R.S. Jaffe, D.L. Fung, K.H. Behrman, Optimal frequency ranges for extracting information on autonomic activity from the heart rate spectrogram. J. Auton. Nerv. Syst. 46(1–2), 37–46 (1994)

    Article  PubMed  CAS  Google Scholar 

  14. M.E. Dibner-Dunlap, D.L. Eckberg, N.M. Magid, N.M. Cintron-Trevino, The long-term increase of baseline and reflexly augmented levels of human vagal-cardiac nervous activity induced by scopolamine. Circulation 71(4), 797–804 (1985)

    Article  PubMed  CAS  Google Scholar 

  15. T. Vybrial, R.J. Byrg, M.E. Maddens, S.S. Bhasin, W.E Chronin, W.E. Boden, M.H. Lehmann, Effects of transdermal scopolamine on heart rate variability in normal subjects. Am. J. Cariol. 65, 604–608 (1990)

    Google Scholar 

  16. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215

    Google Scholar 

  17. M. Costa, A.L. Goldberger, C.K. Peng, Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys. Rev. Lett. 95(198102), 1–4 (2005)

    Google Scholar 

  18. D.R. Chialvo, M.M. Millonas, Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Phys. Lett. A 209(1–2), 26–30 (1995)

    Article  CAS  Google Scholar 

  19. I. Prigogine, I. Antoniou, Laws of nature and time symmetry breaking. Ann. N. U. Acad. Sci. 879, 8–28 (2007)

    Article  Google Scholar 

  20. M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of physiological time series. Phys. Rev. Lett. 89, 062102 (2002)

    Article  Google Scholar 

  21. J. Piskorski, P. Guzik, Geometry of the poincaré plot of rr intervals and its asymmetry in healthy hearts. Physiol. Meas. 28, 287–300 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. A. Porta, K.R. Casali, A.G. Casali, T. Gnecchi-Ruscone, E. Tovaldini, N. Montano, S. Lange, D. Geue, D. Cysarz, P. Van Leeuwen, Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R550–R557 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. A. Porta, S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, A. Malliani, Time reversibility in short-term heart period variability. Comp. Cardiol. 33, 77–80 (2006)

    Google Scholar 

  24. P. Guzik, J. Piskorski, T. Krauze, A. Wykretowicz, H. Wysocki, Heart rate asymmetry by poincaré plots of rr intervals. Biomed. Tech. 51, 530–537 (2006)

    Article  Google Scholar 

  25. C.L. Ehlers, J. Havstad, D. Prichard, J. Theiler, Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 18, 7474–7486 (1998)

    PubMed  CAS  Google Scholar 

  26. J.T. Bigger Jr., J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, W.J. Schneider, P.K. Stein, Rr variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91(7), 1936–1943 (1995)

    Article  PubMed  Google Scholar 

  27. D.L. Eckberg, Nonlinearities of the human carotid baroreceptor-cardiac reflex. Circ. Res. 47, 208–216 (1980)

    Article  PubMed  CAS  Google Scholar 

  28. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica 58, 77–94 (1992)

    Google Scholar 

  29. T. Nkamura,M Small, Applying the method of small-shuffle surrogate data: testing for dynamics in fluctuating data with trends. Int. J. Bifurcat. Chaos 16(12), 3581–3603 (2006)

    Google Scholar 

  30. M. Nurujjaman, R. Narayanan, A.N. Sekar Iyengar, Comparative study of nonlinear properties of eeg signals of normal persons and epileptic patients. Nonlinear Biomed. Phys. 3, 6 (2009). doi: 10.1186/1753–4631–3–6

    Article  PubMed  Google Scholar 

  31. P.D. Welch, The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacous. 15(2), 70–73 (1967)

    Article  Google Scholar 

  32. C. Spearman, The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904)

    Article  Google Scholar 

  33. C.K. Karmakar, A.H. Khandoker, J. Gubbi, M. Palaniswami, Defining asymmetry in heart rate variability signals using a poincaré plot. Physiol. Meas. 30(11), 1227 (2009)

    CAS  Google Scholar 

  34. A. Porta, S. Guzzetti, R. Furlan, T. Gnecchi-Ruscone, N. Montano, Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans. Biomed. Eng. 54, 94–106 (2007)

    Article  PubMed  Google Scholar 

  35. S. Carrasco, M.J. Gaitan, R. Gonzalez, O. Yanez, Correlation among poincaré plot indexes and time and frequency domain measures of heart rate variability. J. Med. Eng. Technol. 25, 240–248 (2001)

    Article  PubMed  CAS  Google Scholar 

  36. D.L. Eckberg, Sympathovagal balance: a critical appraisal. Circulation 96, 3224–3232 (1997)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandoker, A.H., Karmakar, C., Brennan, M., Voss, A., Palaniswami, M. (2013). Heart Rate Asymmetry Analysis Using Poincaré Plot. In: Poincaré Plot Methods for Heart Rate Variability Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7375-6_5

Download citation

Publish with us

Policies and ethics