Skip to main content

Hybrid Electric and Fuel Cell Hybrid Electric Vehicles

  • Chapter
  • First Online:
Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles

Abstract

Different types of alternate vehicles (AVs) exist, such as EVs, HEVs, and fuel cell vehicles (FCVs). However, HEVs are found to be the most practical and efficient substitutes for CVs in the near future. This is because the characteristics of an electric motor are found to be more favorable, compared to the characteristics of an internal combustion engine (ICE). Different combinations of energy sources exist, for example, electric and mechanical (fly-wheel) energy sources or electric and chemical (fuel cell) energy sources. However, the combination of fuel energy and electric energy sources is found to be the most acceptable, due to the combined usage of mature ICE techniques and well-established modern power electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ehsani, Y. Gao, S. E. Gay, A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory and Design, 1st edn. (CRC Press, New York, 2004)

    Google Scholar 

  2. W.D. Jones, Putting electricity where the rubber meets the road. IEEE Spectr. 44(7), 18–20 (2007)

    Article  Google Scholar 

  3. S. Williamson, M. Lukic, A. Emadi, Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans. Power Electron. 21(3), 730–740 (2006)

    Article  Google Scholar 

  4. S. Imai, N. Takeda, Y. Horii, Total efficiency of a hybrid electric vehicle, in Proceedings of IEEE Power Conversion Conference, Nagaoka, Japan, Aug 1997, pp. 947–950

    Google Scholar 

  5. G. Maggetto, J. Van Mierlo, Electric and Hybrid Electric Vehicle: A Survey, IEE Seminar on Electric, Hybrid Electric, and Fuel Cell Vehicles (Durham, UK, 2005), pp. 1–11

    Google Scholar 

  6. S.S. Williamson A. Emadi, Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE 54(3), 856–862 (2005)

    Google Scholar 

  7. F. An, D. Santini, Assessing tank-to-wheel efficiencies of advanced technology vehicles, in Proceedings SAE World Congress, Detroit, MI, March 2003

    Google Scholar 

  8. L. Eudy, J. Zuboy, Overview of advanced technology transportation, 2004 update, Technical Report on Advanced Vehicle Testing Activity, Energy Efficiency and Renewable Energy, U.S. Department of Energy, DOE/GO-102004-1849, Aug 2004

    Google Scholar 

  9. A. Burk, Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California (Institute of Transportation Studies, University of California, Davis) [Online]. Available: http://repositories.cdlib.org/itsdavis/UCD-ITS-RR-07-2

  10. J. Burns, T. Cors, B. Knight, B. Thelen, Evaluating advanced automotive energy technologies: a multivariate mobility contribution metric. Int. J. Energy Techn. Policy 2(3), 262–271 (2004)

    Article  Google Scholar 

  11. S.S. Williamson, A. Emadi, Fuel cell vehicles: opportunities and challenges, in Proceedings of IEEE Power Engineering Society (PES) General Meeting, vol. 2, Denver, CO, June 2004, pp. 1640–1645

    Google Scholar 

  12. X. Li, S.S. Williamson, Comparative investigation of series and parallel hybrid electric vehicle (HEV) efficiencies based on comprehensive parametric analysis, in Proceedings of IEEE Vehicle Power and Propulsion Conference, Arlington, TX, Sept 2007

    Google Scholar 

  13. G. Rizzoni, L. Guzzella, B.M. Baumann, Unified modeling of hybrid electric vehicle drivetrains, AAAS 4(3), 246–257 (1999)

    Google Scholar 

  14. M. Amrhein, S. Member, P.T. Krein, Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions, including power electronics. IEEE Trans. Veh. Technol. 54(3), 825–836 (2005)

    Article  Google Scholar 

  15. J. Wu, A. Emadi, M.J. Duoba, T.P. Bohn, Plug-in hybrid electric vehicles: testing, simulations and analysis, in Proceedings of IEEE Vehicle Power and Propulsion Conference, Arlington, TX, Sept 2007

    Google Scholar 

  16. F. Stodolsky, L. Gaines, C.L. Marshall, F. An, J.J. Eberhardt, Total Fuel Cycle Impacts of Advanced Vehicles, SAE Technical Paper Series, no. 724, 1999

    Google Scholar 

  17. N.R.E.L. NREL, Advanced Vehicle Simulator (ADVISOR) Documentation, http://www.ctts.nrel.gov/analysis/advisor_doc

  18. T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. O’Keefe, S. Sprik, K. Wipke, ADVISOR: a systems analysis tool for advanced vehicle modeling. J. Power Sources 110(2), 255–266 (2002)

    Article  Google Scholar 

  19. D. Boettner, M. Moran, Proton exchange membrane (PEM) fuel cell-powered vehicle performance using direct-hydrogen fueling and on-board methanol reforming. Energy 29(12–15), 2317–2330 (2004)

    Article  Google Scholar 

  20. J. Park, B. Raju, A. Emadi, Effects of An ultra-capacitor and battery energy storage system in a hybrid electric vehicle, Society of Automotive Engineers (SAE) Journal, Paper No. 2005-01-3452, 2005; and, in Proceedings of SAE 2005 Future Transportation Technology Conference, Chicago, IL, Sept 2005

    Google Scholar 

  21. V.H. Johnson, Battery performance models in ADVISOR. J. Power Sources 110(2), 321–329 (2002)

    Article  Google Scholar 

  22. C.C. Chan, The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. proc. IEEE 95(4), 704–718 (2007)

    Article  Google Scholar 

  23. A.P. Roussean, R. Ahluwalia, Q. Zhang, Energy storage requirements for fuel cell vehicles, in Proceeding of SAE World Congress, Detroit, MI, March 2004, Paper No. 2004-01-1302

    Google Scholar 

  24. H.Y. Cho, W. Gao, H. Ginn, A new power control strategy for hybrid fuel cell vehicles, in Proceedings of IEEE Workshop on Power Electronics in Transportation, Detroit, MI, Oct 2004, pp. 159–166

    Google Scholar 

  25. C. Liang, W. Qingnian, Energy management strategy and parametric design for fuel cell family sedan, in Proceedings of SAE Future Transportation Technology Conference and Exposition., Costa Mesa, CA, Aug 2001, Paper No. 2001-01-2506

    Google Scholar 

  26. H.S. Ahn, N.S. Lee, Power distribution control law for FCHEV-A fuzzy logic-based approach, in Proceedings of IEEE International Conference on Control and Automation, Budapest, Hungary, June 2005, pp. 486–0490

    Google Scholar 

  27. N.S. Lee, G.M. Jeong, H.S. Ahn, Improvement of fuel economy using fuzzy logic-based power distribution control strategy for a FCHEV, in Proceedings of IEEE International Conference on Computational Intelligence and Security, vol. 1, Guangzhou, China, 2006, pp. 891–894

    Google Scholar 

  28. J.S. Lai, D.J. Nelson, Energy management power converters in hybrid electric and fuel cell vehicles,in Proceedings of the IEEE, vol. 95, April 2007, pp. 766–777

    Google Scholar 

  29. G. Paganelli, Y. Guezennec, G. Rizzoni, Optimizing control strategy for hybrid fuel cell vehicles, in Proceedings of SAE International Congress, Detroit, MI, March 2002, Paper No. 2002-01-0102

    Google Scholar 

  30. P. Rodatz, G. Paganelli, A. Sciarretta, L. Guzzella, Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle. Control Eng. Practice 13(1), 41–53 (2005)

    Article  Google Scholar 

  31. J. Liu, H. Peng, Control optimization for a power-split hybrid vehicle, in Proceedings of IEEE American Control Conference, Minneapolis, MN, June 2006, pp. 14–16

    Google Scholar 

  32. A. Schell, H. Peng, D. Tran, E. Stamos, C.C. Lin, Modeling and control strategy development for fuel cell electric vehicles. Annual Reviews Control 29, 159–168 (2005)

    Article  Google Scholar 

  33. K. Rajashekara, Power conversion and control strategies for fuel cell vehicles, in Proceedings of 29th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, Roanoke, VA, Nov 2003, pp. 2865–2870

    Google Scholar 

  34. J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett, Fuel Cell Handbook, 4th edn. (Department of Energy, Federal Energy Technology Center, USA, 1998) DOE/FETC-99/1076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon S. Williamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williamson, S.S. (2013). Hybrid Electric and Fuel Cell Hybrid Electric Vehicles. In: Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7711-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7711-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7710-5

  • Online ISBN: 978-1-4614-7711-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics