Skip to main content

IAPs and Necroptotic Cell Death

  • Chapter
  • First Online:
Necrotic Cell Death

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

The word “necroptosis” refers to a mechanism for cell suicide that does not require caspase activity or the proapoptotic Bcl-2 family members Bax and Bak. It can be triggered following ligation of certain members of the TNF receptor superfamily that activate a pathway involving proteins such as the RIP kinases and the pseudokinase MLKL. Signalling by this pathway is modulated by other proteins, such as the TNF receptor-associated factors (TRAFs) and the inhibitor of apoptosis proteins (IAPs). cIAPs interact with TRAFs, ubiquitylate RIP kinases and thereby promote activation of canonical NF-κB by TNF receptors and regulate RIP kinase levels at signalling complexes. “Smac-mimetic” compounds antagonise cIAPs to promote cell death by both caspase-dependent apoptotic and caspase-independent necroptotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beg AA, Baltimore D (1996) An essential role for Nf-kappa-B in preventing Tnf-alpha-induced cell death. Science 274:782–784

    PubMed  CAS  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    PubMed  CAS  Google Scholar 

  • Bertrand MJ, Lippens S, Staes A, Gilbert B et al (2011) cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One 6:e22356

    PubMed Central  PubMed  CAS  Google Scholar 

  • Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with cys/his sequence motif. J Virol 68:2521–2528

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blackwell K, Zhang L, Workman LM, Ting AT et al (2013) Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IκB kinase activation. Mol Cell Biol 33:1901–1915

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV et al (2009) Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochem J 417:149–160

    PubMed  CAS  Google Scholar 

  • Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S et al (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189:5508–5512

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352

    PubMed  CAS  Google Scholar 

  • Chang DW, Xing Z, Capacio VL, Peter ME, Yang X (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO J 22:4132–4142

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    PubMed Central  PubMed  CAS  Google Scholar 

  • Conte D, Holcik M, Lefebvre CA, Lacasse E et al (2006) Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol 26:699–708

    PubMed Central  PubMed  CAS  Google Scholar 

  • Conze DB, Albert L, Ferrick DA, Goeddel DV et al (2005) Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol Cell Biol 25:3348–3356

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crook NE, Clem RJ, Miller LK (1993) An apoptosis inhibiting baculovirus gene with a zinc finger like motif. J Virol 67:2168–2174

    PubMed Central  PubMed  CAS  Google Scholar 

  • Darding M, Feltham R, Tenev T, Bianchi K et al (2011) Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2. Cell Death Differ 18:1376–1386

    PubMed Central  PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T et al (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277

    PubMed  CAS  Google Scholar 

  • Dillon CP, Oberst A, Weinlich R, Janke LJ et al (2012) Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 1:401–407

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doi TS, Marino MW, Takahashi T, Yoshida T et al (1999) Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci U S A 96:2994–2999

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    PubMed  CAS  Google Scholar 

  • Duckett CS, Nava VE, Gedrich RW, Clem RJ et al (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. Embo J 15:2685–2694

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dueber EC, Schoeffler AJ, Lingel A, Elliott JM et al (2011) Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334:376–380

    PubMed  CAS  Google Scholar 

  • Dynek JN, Goncharov T, Dueber EC, Fedorova AV et al (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257

    PubMed  CAS  Google Scholar 

  • Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL (2001) DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 152:483–490

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feltham R, Moulin M, Vince JE, Mace PD et al (2010) Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding. J Biol Chem 285:17525–17536

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feltham R, Bettjeman B, Budhidarmo R, Mace PD et al (2011) Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem 286:17015–17028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feng S, Yang Y, Mei Y, Ma L et al (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:2056–2067

    PubMed  CAS  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP et al (2011) CIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    PubMed  CAS  Google Scholar 

  • Gaither A, Porter D, Yao Y, Borawski J et al (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67:11493–11498

    PubMed  CAS  Google Scholar 

  • Garber K (2005) New apoptosis drugs face critical test. Nat Biotechnol 23:409–411

    PubMed  CAS  Google Scholar 

  • Gerlach B, Cordier SM, Schmukle AC, Emmerich CH et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591–596

    PubMed  CAS  Google Scholar 

  • Geserick P, Hupe M, Moulin M, Wong WW et al (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187:1037–1054

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haas TL, Emmerich CH, Gerlach B, Schmukle AC et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844

    PubMed  CAS  Google Scholar 

  • Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541

    PubMed  CAS  Google Scholar 

  • He S, Wang L, Miao L, Wang T et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    PubMed  CAS  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, Wassell R et al (2001) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J Biol Chem 277:432–438

    PubMed  Google Scholar 

  • Hinds MG, Norton RS, Vaux DL, Day CL (1999) Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 6:648–651

    PubMed  CAS  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    PubMed  CAS  Google Scholar 

  • Ikeda F, Deribe YL, Skånland SS, Stieglitz B et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471:637–641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jin Z, Li Y, Pitti R, Lawrence D et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    PubMed  CAS  Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D et al (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y et al (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984

    PubMed  CAS  Google Scholar 

  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    PubMed  CAS  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F et al (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297–303

    PubMed  CAS  Google Scholar 

  • Kenneth NS, Younger JM, Hughes ED, Marcotte D et al (2012) An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1. Biochem J 443:355–359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kirisako T, Kamei K, Murata S, Kato M et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25:4877–4887

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo Journal 14:5579–5588

    PubMed Central  PubMed  CAS  Google Scholar 

  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259

    PubMed  Google Scholar 

  • Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lavrik IN, Mock T, Golks A, Hoffmann JC et al (2008) CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J Biol Chem 283:26401–26408

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK et al (2004) A small molecule smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305:1471–1474

    PubMed  CAS  Google Scholar 

  • Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liston P, Roy N, Tamai K, Lefebvre C et al (1996) Suppression of apoptosis in mammalian cells by naip and a related family of iap genes. Nature 379:349–353

    PubMed  CAS  Google Scholar 

  • Mahoney DJ, Cheung HH, Mrad RL, Plenchette S et al (2008) Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 105:11778–11783

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S et al (2001) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    PubMed  CAS  Google Scholar 

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miwa K, Asano M, Horai R, Iwakura Y et al (1998) Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 4:1287–1292

    PubMed  CAS  Google Scholar 

  • Moulin M, Anderton H, Voss AK, Thomas T et al (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J 31:1679–1691

    PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    PubMed  CAS  Google Scholar 

  • Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T et al (2006) An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 25:5549–5559

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ndubaku C, Varfolomeev E, Wang L, Zobel K et al (2009) Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists. ACS Chem Biol 4:557–566

    PubMed  CAS  Google Scholar 

  • Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-κB signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1 and Toll-like receptors 2 and 4. Mol Cell Biol 24:1464–1469

    PubMed Central  PubMed  CAS  Google Scholar 

  • O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A et al (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13:1437–1442

    PubMed Central  PubMed  Google Scholar 

  • O’Reilly LA, Tai L, Lee L, Kruse EA et al (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Google Scholar 

  • Oberst A, Dillon CP, Weinlich R, McCormick LL et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    PubMed Central  PubMed  CAS  Google Scholar 

  • Park SM, Yoon JB, Lee TH (2004) Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett 566:151–156

    PubMed  CAS  Google Scholar 

  • Peter ME, Budd RC, Desbarats J, Hedrick SM et al (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    PubMed  CAS  Google Scholar 

  • Pop C, Oberst A, Drag M, Van Raam BJ et al (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433:447–457

    PubMed  CAS  Google Scholar 

  • Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kda tumor necrosis factor receptor. Cell 78:681–692

    PubMed  CAS  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNF-R2-TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins. Cell 83:1243–1252

    PubMed  CAS  Google Scholar 

  • Sagulenko V, Thygesen SJ, Sester DP, Idris A et al (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20(9):1149–1160

    PubMed  CAS  Google Scholar 

  • Schneider P (2008) Signaling by TNF and related ligands. In: Epstein C, Erickson R, Wynshaw-Boris A (eds.). Inborn errors of development. 2nd edition, Oxford monographs on medical genetics 54, Oxford University Press, Oxford, pp 433–441

    Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M et al (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428

    PubMed  CAS  Google Scholar 

  • Schütze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9:655–662

    PubMed  Google Scholar 

  • Silke J (2011) The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol 23:620–626

    PubMed  CAS  Google Scholar 

  • Silke J, Brink R (2010) Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 17:35–45

    PubMed  CAS  Google Scholar 

  • Silke J, Verhagen A, Ekert P, Vaux D (2000) Sequence as well as functional similarity for DIABLO/smac and grim, reaper and Hid ? Cell Death Diff 7:1275

    CAS  Google Scholar 

  • Srinivasula SM, Hegde R, Saleh A, Datta P et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    PubMed  CAS  Google Scholar 

  • Sun L, Wang H, Wang Z, He S et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    PubMed  CAS  Google Scholar 

  • Takahashi N, Duprez L, Grootjans S, Cauwels A et al (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M et al (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    PubMed  CAS  Google Scholar 

  • Tokunaga F, Sakata SI, Saeki Y, Satomi Y et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132

    PubMed  CAS  Google Scholar 

  • Tokunaga F, Nakagawa T, Nakahara M, Saeki Y et al (2011) SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471:633–636

    PubMed  CAS  Google Scholar 

  • Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind TRAFs. Proc Natl Acad Sci U S A 93:4974–4978

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNFα-induced apoptosis by NF-κB. Science 274:787–789

    PubMed  Google Scholar 

  • Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (2013) Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20:185–187

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B et al (2010) cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18:656–665

    PubMed Central  PubMed  Google Scholar 

  • Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N et al (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276

    PubMed  CAS  Google Scholar 

  • Varfolomeev E, Maecker H, Sharp D, Lawrence D et al (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280:40599–40608

    PubMed  CAS  Google Scholar 

  • Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681

    PubMed  CAS  Google Scholar 

  • Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN et al (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283:24295–24299

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297

    PubMed  CAS  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V et al (1998a) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M et al (1998b) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930

    PubMed Central  PubMed  CAS  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:42–53

    Google Scholar 

  • Verhagen AM, Silke J, Ekert PG, Pakusch M et al (2001) HtrA2 Promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    PubMed  Google Scholar 

  • Verhagen AM, Kratina TK, Hawkins CJ, Silke J et al (2007) Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Diff 14:348–357

    CAS  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    PubMed  CAS  Google Scholar 

  • Vince JE, Wong WW, Gentle I, Lawlor KE et al (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36:215–227

    PubMed  CAS  Google Scholar 

  • Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-κB pathway. FEBS J 278:862–876

    PubMed  CAS  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703

    PubMed  CAS  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    PubMed  CAS  Google Scholar 

  • Wertz IE, Dixit VM (2010) Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 17:14–24

    PubMed  CAS  Google Scholar 

  • Wong WW, Gentle IE, Nachbur U, Anderton H et al (2010) RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ 17:482–487

    PubMed  CAS  Google Scholar 

  • Wright A, Reiley WW, Chang M, Jin W et al (2007) Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 13:705–716

    PubMed  CAS  Google Scholar 

  • Wu G, Chai JJ, Suber TL, Wu JW et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    PubMed  CAS  Google Scholar 

  • Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8:398–406

    PubMed  CAS  Google Scholar 

  • Yeh WC, Delapompa JL, Mccurrach ME, Shu HB et al (1998) Fadd—essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954–1958

    PubMed  CAS  Google Scholar 

  • Yeh WC, Itie A, Elia AJ, Ng M et al (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642

    PubMed  CAS  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhou X, McQuade T, Li J et al (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao J, Jitkaew S, Cai Z, Choksi S et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109:5322–5327

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by NHMRC grants 1025594 and 1046984 and made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS (361646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Silke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silke, J., Vaux, D. (2014). IAPs and Necroptotic Cell Death. In: Shen, HM., Vandenabeele, P. (eds) Necrotic Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8220-8_4

Download citation

Publish with us

Policies and ethics