Skip to main content

Molecular Classification and Risk Stratification

  • Chapter
  • First Online:
Multiple Myeloma

Abstract

Studies over the past decade have greatly improved our understanding of the molecular basis of multiple myeloma and mechanisms of disease progression. Initial studies in myeloma, as with other hematological malignancies, depended solely on metaphase cytogenetics [1–5]. While this methodology was critical in the early studies of the disease, less than a third of the patients had bone marrow cytogenetic studies that were informative, primarily a reflection of the low proliferative state of the malignant plasma cells [6–8]. This was followed by the development of interphase FISH (fluorescent in situ hybridization), which did not depend on dividing cells for detection of abnormalities [9, 10]. With universal adoption of FISH studies, it became clear that nearly all patients with myeloma had genetic abnormalities that could be detected using FISH [11, 12]. Further refinement of the FISH techniques allowed simultaneous detection of the plasma cells, either by using markers for plasma cells or by performing FISH testing on sorted plasma cells, thus ensuring that the abnormality detected was unique to the plasma cells. Development of high-density oligonucleotide arrays allowed assessment of gene expression in tumor cells, and development of this technology provided an unprecedented look into the plasma cell biology, and better appreciation of the genetic heterogeneity that is the hallmark of this disease [13–18]. More recently, cutting edge genomic techniques including RNA sequencing, array CGH, SNP arrays, and whole genome sequencing have all been applied to myeloma allowing us to dissect the molecular complexity of this disease. A better appreciation of the heterogeneity uncovered by these assays have in turn led to several attempts at classifying the disease into groups that have implications on the disease outcome as well as best decisions regarding the best treatment approaches [19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drach J, Angerler J, Schuster J, et al. Interphase fluorescence in situ hybridization identifies chromosomal abnormalities in plasma cells from patients with monoclonal gammopathy of undetermined significance. Blood. 1995;86(10):3915–21.

    PubMed  CAS  Google Scholar 

  2. Tricot G, Sawyer JR, Jagannath S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol. 1997;15(7):2659–66.

    PubMed  CAS  Google Scholar 

  3. Rajkumar S, Fonseca R, Lacy M, et al. Abnormal cytogenetics predict poor survival after high-dose therapy and autologous blood cell transplantation in multiple myeloma. Bone Marrow Transplant. 1999; 24(5):497–503.

    Article  PubMed  CAS  Google Scholar 

  4. Avet-Loiseau H. Role of genetics in prognostication in myeloma. Best Pract Res Clin Haematol. 2007;20(4):625–35.

    Article  PubMed  CAS  Google Scholar 

  5. Fonseca R, Ahmann GJ, Juneau AL, et al. Cytogenetic abnormalities in multiple myeloma and related plasma cell disorders: a comparison of conventional cytogenetics to fluorescent in situ hybridization with simultaneous cytoplasmic immunoglobulin staining. Blood. 1997;90 Suppl 1:349a.

    Google Scholar 

  6. Seong C, Delasalle K, Hayes K, et al. Prognostic value of cytogenetics in multiple myeloma. Br J Haematol. 1998;101(1):189–94.

    Article  PubMed  CAS  Google Scholar 

  7. Smadja NV, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12(6): 960–9.

    Article  PubMed  CAS  Google Scholar 

  8. Fonseca R, Coignet LJ, Dewald GW. Cytogenetic abnormalities in multiple myeloma. Hematol Oncol Clin North Am. 1999;13(6):1169–80, viii.

    Article  PubMed  CAS  Google Scholar 

  9. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64(4):1546–58.

    Article  PubMed  CAS  Google Scholar 

  10. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21.

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5.

    Article  PubMed  CAS  Google Scholar 

  12. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–95.

    Article  PubMed  CAS  Google Scholar 

  13. Shaughnessy Jr J, Zhan F, Barlogie B, Stewart AK. Gene expression profiling and multiple myeloma. Best Pract Res Clin Haematol. 2005;18(4):537–52.

    Article  PubMed  CAS  Google Scholar 

  14. Shaughnessy Jr JD, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6): 2276–84.

    Article  PubMed  CAS  Google Scholar 

  15. Kuiper R, Broyl A, de Knegt Y, et al. A gene expression signature for high-risk multiple myeloma. Leukemia. 2012;26(11):2406–13.

    Article  PubMed  CAS  Google Scholar 

  16. Decaux O, Lode L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol. 2008;26(29):4798–805.

    Article  PubMed  CAS  Google Scholar 

  17. Zhan F, Barlogie B, Mulligan G, Shaughnessy Jr JD, Bryant B. High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood. 2008;111(2):968–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar SK, Uno H, Jacobus SJ, et al. Impact of gene expression profiling-based risk stratification in patients with myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood. 2011; 118(16):4359–62.

    Article  PubMed  CAS  Google Scholar 

  19. Kumar SK, Mikhael JR, Buadi FK, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines. Mayo Clin Proc. 2009;84(12):1095–110.

    Article  PubMed  CAS  Google Scholar 

  20. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20(40): 5611–22.

    Article  PubMed  CAS  Google Scholar 

  21. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333–8.

    Article  PubMed  CAS  Google Scholar 

  22. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303.

    Article  PubMed  CAS  Google Scholar 

  23. Avet-Loiseau H, Li JY, Godon C, et al. P53 deletion is not a frequent event in multiple myeloma. Br J Haematol. 1999;106(3):717–9.

    Article  PubMed  CAS  Google Scholar 

  24. Elnenaei MO, Gruszka-Westwood AM, A’Hernt R, et al. Gene abnormalities in multiple myeloma; the relevance of TP53, MDM2, and CDKN2A. Haematologica. 2003;88(5):529–37.

    PubMed  CAS  Google Scholar 

  25. Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005;105(1):358–60.

    Article  PubMed  CAS  Google Scholar 

  26. Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106(8):2837–40.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Paz N, Chng WJ, McClure RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood. 2007;109(3):1228–32. doi:10.1182/blood-2006-05-024661.

    Article  PubMed  CAS  Google Scholar 

  28. Nemec P, Zemanova Z, Greslikova H, et al. Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemotherapy. Biol Blood Marrow Transplant. 2010; 16(4):548–54.

    Article  PubMed  CAS  Google Scholar 

  29. Balcarkova J, Urbankova H, Scudla V, et al. Gain of chromosome arm 1q in patients in relapse and progression of multiple myeloma. Cancer Genet Cytogenet. 2009;192(2):68–72.

    Article  PubMed  CAS  Google Scholar 

  30. Qazilbash MH, Saliba RM, Ahmed B, et al. Deletion of the short arm of chromosome 1 (del 1p) is a strong predictor of poor outcome in myeloma patients undergoing an autotransplant. Biol Blood Marrow Transplant. 2007;13(9):1066–72.

    Article  PubMed  Google Scholar 

  31. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108(6): 2020–8.

    Article  PubMed  CAS  Google Scholar 

  32. Broyl A, Hose D, Lokhorst H, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010; 116(14):2543–53.

    Article  PubMed  CAS  Google Scholar 

  33. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–75.

    Article  PubMed  CAS  Google Scholar 

  34. Fonseca R, Stewart AK. Targeted therapeutics for multiple myeloma: the arrival of a risk-stratified approach. Mol Cancer Ther. 2007;6(3):802–10.

    Article  PubMed  CAS  Google Scholar 

  35. Avet-Loiseau H, Durie BG, Cavo M, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project. Leukemia. 2013;27(3):711–7.

    Article  PubMed  CAS  Google Scholar 

  36. Avet-Loiseau H, Soulier J, Fermand JP, et al. Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. Leukemia. 2010;24(3):623–8.

    Article  PubMed  CAS  Google Scholar 

  37. Avet-Louseau H, Daviet A, Sauner S, Bataille R, Intergroupe Francophone du Myélome. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol. 2000;111(4):1116–7.

    Article  PubMed  CAS  Google Scholar 

  38. Chiecchio L, Protheroe RK, Ibrahim AH, et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia. 2006;20(9):1610–7.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou Y, Nair B, Shaughnessy Jr JD, et al. Cytogenetic abnormalities in multiple myeloma: poor prognosis linked to concomitant detection in random and focal lesion bone marrow samples and associated with high-risk gene expression profile. Br J Haematol. 2009;145(5):637–41.

    Article  PubMed  Google Scholar 

  40. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    Article  PubMed  CAS  Google Scholar 

  41. Moreau P, Attal M, Garban F, et al. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia. 2007;21(9):2020–4.

    Article  PubMed  CAS  Google Scholar 

  42. Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaji Kumar M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Kumar, S., Fonseca, R., Stewart, K. (2014). Molecular Classification and Risk Stratification. In: Gertz, M., Rajkumar, S. (eds) Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8520-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8520-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8519-3

  • Online ISBN: 978-1-4614-8520-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics