Skip to main content

Emerging Technologies to Study Long Non-coding RNAs

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

It has been less than half a century since Robert W. Holley et al. used 140 kg of commercial baker’s yeast to characterize the first noncoding RNA (ncRNA), alanine tRNA. Now, 48 years later, advancements in genomic technologies have enabled scientists to study genomes, transcriptomes, and proteomes, on an unprecedented and high-throughput scale, and even at the single cell resolution. These discoveries have completely changed the classical view of the central dogma of molecular biology, as we now understand that protein coding genes account for less than 2 % of human genome, however, the vast majority of the genome is transcribed (Clark et al. 2011) {Lander, 2001 #41}. This means that the bulk of the genome encodes for ncRNA molecules, which can be further categorized into housekeeping and regulatory ncRNAs. The latter can be broadly classified based on their size as small ncRNAs (< 200 bp) and long noncoding RNAs (lncRNAs) (> 200 bp) (Nagano and Fraser 2011; Ponting et al. 2009). Many of the small ncRNAs have been identified and their mechanism of action has been heavily studied. However, the journey to study the lncRNAs has just begun (Gupta et al. 2010; Wilusz et al. 2009; Derrien et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Clark, M. B., et al. (2011). The reality of pervasive transcription. PLoS Biology, 9, e1000625; discussion e1001102.

    Google Scholar 

  • Friedman J.M., et al. (2006). Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet. 79, 500.

    Google Scholar 

  • Nagano, T., & Fraser, P. (2011). No-nonsense functions for long noncoding RNAs. Cell, 145, 178.

    Google Scholar 

  • Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136, 629.

    Google Scholar 

  • Gupta, R. A., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071.

    Google Scholar 

  • Wilusz, J. E., Sunwoo, H., & Spector, D. L., (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes & Development 23, 1494.

    Google Scholar 

  • Derrien, T., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775.

    Google Scholar 

  • Brown, C. J., et al. (1991). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 349, 38.

    Google Scholar 

  • Kampa, D., et al. (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 14, 331.

    Google Scholar 

  • Cheng, J., et al. (2005). Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308, 1149.

    Google Scholar 

  • Rinn, J. L., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129, 1311.

    Google Scholar 

  • Bernstein, E., & Allis, C. D. (2005). RNA meets chromatin. Genes & Development, 19, 1635.

    Google Scholar 

  • Plath, K., et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300, 131.

    Google Scholar 

  • Kretz, M., et al. (2013). Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 493, 231.

    Google Scholar 

  • Batista, P. J., & Chang, H. Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell, 152, 1298.

    Google Scholar 

  • Clemson, C. M., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33, 717.

    Google Scholar 

  • Willingham, A. T., et al. (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570.

    Google Scholar 

  • Jiang, L., Duan, D., Shen, Y., & Li, J. (2012). Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosensors & Bioelectronics, 34, 291.

    Google Scholar 

  • Tang, X., et al. (2007). A simple array platform for microRNA analysis and its application in mouse tissues. Rna, 13, 1803.

    Google Scholar 

  • Benes, V., & Castoldi, M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50, 244.

    Google Scholar 

  • Nagalakshmi, U., et al. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344.

    Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621.

    Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10, 57.

    Google Scholar 

  • Cabili, M. N., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25, 1915.

    Google Scholar 

  • Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., & Mattick, J. S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105, 716.

    Google Scholar 

  • Gall, J. G., & Pardue, M. L. (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences of the United States of America, 63, 378.

    Google Scholar 

  • Chisholm, K. M., et al. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS ONE, 7, e47998.

    Article  PubMed  CAS  Google Scholar 

  • Rapicavoli, N. A., Poth, E. M., Zhu, H., & Blackshaw, S. (2011). The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural development, 6, 32.

    Article  PubMed  CAS  Google Scholar 

  • Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 29, 288.

    Google Scholar 

  • Mehler, M. F., & Mattick, J. S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiological Reviews, 87, 799.

    Google Scholar 

  • Collins, M. L., et al. (1997). A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Research, 25, 2979.

    Google Scholar 

  • Jia, H., et al. (2010). Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 16, 1478.

    Google Scholar 

  • Guttman, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223.

    Google Scholar 

  • Khalil, A. M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667.

    Google Scholar 

  • Loewer, S., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42, 1113.

    Google Scholar 

  • Harrow, J., et al. (2012). GENCODE: the reference human genome annotation for The ENCODE Project. Genome Research, 22, 1760.

    Google Scholar 

  • Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145.

    Article  PubMed  CAS  Google Scholar 

  • Bertone, P., Gerstein, M., & Snyder, M. (2005). Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery. Chromosome Research : An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 13, 259.

    Article  CAS  Google Scholar 

  • Kapranov, P., et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science, 296, 916.

    Google Scholar 

  • Rinn, J. L., et al. (2003), The transcriptional activity of human Chromosome 22. Genes & Development, 17, 529.

    Google Scholar 

  • Kretz, M., et al. (2012). Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes & Development, 26, 338.

    Google Scholar 

  • Lander E.S., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860. http://www.ncbi.nlm.nih.gov/pubmed/11237011.

  • Lee, C., & Kikyo, N. (2012). Strategies to identify long noncoding RNAs involved in gene regulation. Cell & Bioscience, 2, 37.

    Article  CAS  Google Scholar 

  • Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105.

    Google Scholar 

  • Pauli, A., et al. (2012). Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 22, 577.

    Google Scholar 

  • Young, R. S., et al. (2012). Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 4, 427.

    Article  PubMed  CAS  Google Scholar 

  • de Araujo, M. E., & Huber, L. A. (2007). Subcellular fractionation. Methods in Molecular Biology, 357, 73.

    PubMed  Google Scholar 

  • Bhatt, D. M., et al. (2012). Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell, 150, 279.

    Google Scholar 

  • Tilgner, H., et al. (2012). Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Research, 22, 1616.

    Google Scholar 

  • Sleutels, F., Zwart, R., & Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415, 810.

    Google Scholar 

  • Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S., & Tilghman, S. M. (2006). Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes & Development, 20, 1268.

    Google Scholar 

  • Kapranov, P., et al. (2005). Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Research, 15, 987.

    Google Scholar 

  • Broadbent, K. M., et al. (2011). A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biology, 12, R56.

    Article  PubMed  CAS  Google Scholar 

  • Scotto-Lavino, E., Du, G., & Frohman, M. A. (2006). Amplification of 5’ end cDNA with ‘new RACE’. Nature Protocols, 1, 3056.

    Article  PubMed  CAS  Google Scholar 

  • Shiraki, T., et al. (2003). Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences of the United States of America, 100, 15776.

    Google Scholar 

  • Valen, E., et al. (2009). Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Research, 19, 255.

    Google Scholar 

  • Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101.

    Google Scholar 

  • German, M. A., Luo, S., Schroth, G., Meyers, B. C., & Green, P. J. (2009). Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols, 4, 356.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, G. (1989). Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods in Enzymology, 180, 192.

    Article  PubMed  CAS  Google Scholar 

  • Low, J. T., & Weeks, K. M. (2010). SHAPE-directed RNA secondary structure prediction. Methods, 52, 150.

    Google Scholar 

  • Machado-Lima, A., del Portillo, H. A., & Durham, A. M. (2008). Computational methods in noncoding RNA research. Journal of Mathematical Biology, 56, 15.

    Google Scholar 

  • Underwood, J. G., et al. (2010). FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nature Methods, 7, 995.

    Google Scholar 

  • Reuter, J., & Mathews, D. (2010). RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129.

    Article  PubMed  Google Scholar 

  • Crawford, G. E., et al. (2006). Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Research, 16, 123.

    Google Scholar 

  • Reich, D. E., Gabriel, S. B., & Altshuler, D. (2003). Quality and completeness of SNP databases. Nature genetics, 33, 457.

    Google Scholar 

  • Pasmant, E., et al. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963.

    Google Scholar 

  • Barnes, C., et al. (2008). A robust statistical method for case-control association testing with copy number variation. Nature Genetics, 40, 1245.

    Google Scholar 

  • Sebat, J., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445.

    Google Scholar 

  • Mefford, H. C., et al. (2010). Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genetics, 6, e1000962.

    Google Scholar 

  • Swaminathan, S., et al. (2012). Analysis of copy number variation in Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. PLoS ONE, 7, e50640.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, F. R., et al. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 21, 3798.

    Google Scholar 

  • Duan, J., Zhang, J. G., Deng, H. W., & Wang, Y. P. (2013). Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS ONE, 8, e59128.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S., Xuan, Z., Makarov, V., Ye, K., & Sebat, J. (2009). Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research, 19, 1586.

    Google Scholar 

  • Moran, V. A., Perera, R. J., & Khalil, A. M. (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research, 40, 6391.

    Google Scholar 

  • Huarte, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142, 409.

    Google Scholar 

  • Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.

    Google Scholar 

  • Niranjanakumari, S., Lasda, E., Brazas, R., & Garcia-Blanco, M. A. (2002). Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods, 26, 182.

    Google Scholar 

  • Brooks, S. A., & Rigby, W. F. (2000). Characterization of the mRNA ligands bound by the RNA binding protein hnRNP A2 utilizing a novel in vivo technique. Nucleic Acids Research, 28, E49.

    Google Scholar 

  • Mili, S., & Steitz, J. A. (2004). Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. Rna, 10, 1692.

    Google Scholar 

  • Collins, K. (2008). Physiological assembly and activity of human telomerase complexes. Mechanisms of Ageing and Development, 129, 91.

    Google Scholar 

  • Heyne, S., Costa, F., Rose, D., & Backofen, R. (2012). GraphClust: alignment-free structural clustering of local RNA secondary structures. Bioinformatics, 28, i224.

    Google Scholar 

  • Selth, L. A., Gilbert, C., & Svejstrup, J. Q. (2009). RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harbor protocols, 2009, pdb prot5234.

    Google Scholar 

  • Licatalosi, D. D., et al. (2008). HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464.

    Google Scholar 

  • Ule, J., Jensen, K., Mele, A., & Darnell, R. B. (2005). CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37, 376.

    Google Scholar 

  • Guil, S., et al. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural & Molecular Biology, 19, 664.

    Google Scholar 

  • Sparmann, A., & van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6, 846.

    Google Scholar 

  • Chase, A., & Cross, N. C. (2011). Aberrations of EZH2 in cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 17, 2613.

    Google Scholar 

  • Bu, D., et al. (2012). NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Research, 40, D210.

    Google Scholar 

  • Konig, J., Zarnack, K., Luscombe, N. M., & Ule, J. (2011). Protein-RNA interactions: new genomic technologies and perspectives. Nature Reviews. Genetics, 13, 77.

    Google Scholar 

  • Hafner, M., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129.

    Google Scholar 

  • Konig, J., et al. (2010). iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Structural & Molecular Biology, 17, 909.

    Google Scholar 

  • Yap, K. L., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662.

    Google Scholar 

  • Bertani, S., Sauer, S., Bolotin, E., & Sauer, F. (2011). The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Molecular Cell, 43, 1040.

    Google Scholar 

  • Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., & Chang, H. Y. (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44, 667.

    Google Scholar 

  • Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482, 339.

    Google Scholar 

  • Lucchesi, J. C., Kelly, W. G., & Panning, B. (2005). Chromatin remodeling in dosage compensation. Annual Review of Genetics, 39, 615.

    Article  PubMed  CAS  Google Scholar 

  • Alekseyenko, A. A., et al. (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell, 134, 599.

    Google Scholar 

  • Chu, C., Quinn, J., & Chang, H. Y. (2012). Chromatin isolation by RNA purification (ChIRP). Journal of Visualized Experiments: JoVE.

    Google Scholar 

  • Guttman, M., et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295.

    Google Scholar 

  • McCarthy, N. (2012). Epigenetics. Going places with BANCR. Nature Reviews. Cancer, 12, 451.

    Google Scholar 

  • Chakraborty, D., et al. (2012). Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nature Methods, 9, 360.

    Google Scholar 

  • Guttman, M., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28, 503.

    Google Scholar 

  • Liao, Q., et al. (2011). ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Research, 39, W118.

    Google Scholar 

  • Grossman, S. R., et al. (2013). Identifying recent adaptations in large-scale genomic data. Cell, 152, 703.

    Google Scholar 

  • Siepel, A., et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research, 15, 1034.

    Google Scholar 

  • Benelli, M., et al. (2012). Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics, 28, 3232.

    Google Scholar 

  • Risueno, A., Fontanillo, C., Dinger, M. E., & De Las Rivas, J. (2010). GATExplorer: genomic and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinformatics, 11, 221.

    Article  PubMed  Google Scholar 

  • Bao, M., Cervantes Cervantes, M., Zhong, L., & Wang, J. T. (2012). Searching for non-coding RNAs in genomic sequences using ncRNAscout. Genomics, Proteomics & Bioinformatics, 10, 114.

    Google Scholar 

  • Salari, R., et al. (2009). smyRNA: a novel Ab initio ncRNA gene finder. PLoS ONE, 4, e5433.

    Article  PubMed  Google Scholar 

  • Wang, L., et al. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41, e74.

    Google Scholar 

  • Lin, M. F., Jungreis, I., & Kellis, M. (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27, i275.

    Google Scholar 

  • Tabei, Y., Kiryu, H., Kin, T., & Asai, K. (2008). A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics, 9, 33.

    Article  PubMed  Google Scholar 

  • McCallum, K. J., & Wang, J. P. (2013). Quantifying copy number variations using a hidden Markov model with inhomogeneous emission distributions. Biostatistics, 14, 600.

    Google Scholar 

  • Fiegler, H., et al. (2006). Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Research, 16, 1566.

    Google Scholar 

  • Glessner, J. T., Li, J., & Hakonarson, H. (2013). ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Research, 41, e64.

    Google Scholar 

  • Szymanski, M., Erdmann, V. A., & Barciszewski, J. (2003). Noncoding regulatory RNAs database. Nucleic Acids Research, 31, 429.

    Google Scholar 

  • Da Sacco, L., Baldassarre, A., & Masotti, A. (2012). Bioinformatics Tools and Novel Challenges in Long Non-Coding RNAs (lncRNAs) Functional Analysis. International Journal of Molecular Sciences, 13, 97.

    Article  PubMed  Google Scholar 

  • Paschoal, A. R., et al. (2012). Non-coding transcription characterization and annotation: A guide and web resource for non-coding RNA databases. RNA Biology, 9, 274.

    Google Scholar 

  • Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E., & Mattick, J. S. (2011). lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Research 39, D146.

    Google Scholar 

  • Mituyama, T., et al. (2009). The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Research, 37, D89.

    Google Scholar 

  • Bu, D., et al. (2011). NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Research, 39, d146–d151.

    Google Scholar 

  • Burge, S. W., et al. (2012). Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 41, D226.

    Google Scholar 

  • Dinger, M. E., et al. (2009). NRED: a database of long noncoding RNA expression. Nucleic Acids Research, 37, D122.

    Google Scholar 

  • Wu, T., et al. (2006). NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Research, 34, D150.

    Google Scholar 

  • Yang, J.-H., Li, J.-H., Jiang, S., Zhou, H., & Qu, L.-H. (2012). ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Research, 41, D177.

    Google Scholar 

  • Yamasaki, C., et al. (2009). H-InvDB in 2009: extended database and data mining resources for human genes and transcripts. Nucleic Acids Research, 38, D626.

    Google Scholar 

  • Szymański, M., Erdmann, V. A., & Barciszewski, J. (2003). Noncoding regulatory RNAs database. Nucleic Acids Research, 31, 429.

    Google Scholar 

  • Niazi, F., & Valadkhan, S. (2012). Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3’ UTRs. Rna, 18, 825.

    Google Scholar 

  • Volders, P.-J., et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Research, 41, D246.

    Google Scholar 

  • Chen, G., et al. (2013). LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Research, 41, D983.

    Google Scholar 

  • Paraskevopoulou, M. D., et al. (2013). DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Research, 41, D239.

    Google Scholar 

  • Belinky, F., et al. (2013). Non-redundant compendium of human ncRNA genes in GeneCards. Bioinformatics, 29, 255.

    Google Scholar 

  • Jin, J., Liu, J., Wang, H., Wong, L., & Chua, N.-H. (2013). PLncDB: plant long non-coding RNA database. Bioinformatics, 29, 1068.

    Google Scholar 

  • Sun, K., et al. (2013). iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics, 14, 1.

    Google Scholar 

  • Gellert, P., Ponomareva, Y., Braun, T., & Uchida, S. (2013). Noncoder: a web interface for exon array-based detection of long non-coding RNAs. Nucleic Acids Research, 41, e20.

    Google Scholar 

  • Chen, C.-J., et al. (2012). ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics, 28, 3147.

    Google Scholar 

  • Chang, T.-H., et al. (2013). An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 14, 1.

    Google Scholar 

  • Wright, M. W., & Bruford, E. A. (2011). Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Human Genomics, 5, 90.

    Google Scholar 

  • Sun, L., et al. (2012). Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinformatics, 13, 331.

    Article  PubMed  CAS  Google Scholar 

  • Jeggari, A., Marks, D. S., & Larsson, E. (2012). miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics, 28, 2062–2063.

    Google Scholar 

  • Beck, A. H., et al. (2010). 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS ONE, 5, e8768.

    Article  PubMed  Google Scholar 

  • Brunner, A. L., et al. (2012). Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biology, 13, R75.

    Google Scholar 

  • Kertesz, M., et al. (2010). Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 103.

    Google Scholar 

  • Spitale, R. C., et al. (2010). RNA SHAPE analysis in living cells. Nature Chemical Biology, 9, 18.

    Google Scholar 

  • Wang, Y., Zheng, D., Tan, Q., Wang, M. X., & Gu, L. Q. (2011). Nanopore-based detection of circulating microRNAs in lung cancer patients. Nature Nanotechnology, 6, 668.

    Google Scholar 

  • Wanunu, M., et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotechnology, 5, 807.

    Google Scholar 

  • Dong, H., et al. (2012). Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Analytical Chemistry, 84, 4587.

    Google Scholar 

  • Neely, L. A., et al. (2006). A single-molecule method for the quantitation of microRNA gene expression. Nature Methods, 3, 41.

    Google Scholar 

  • Cissell, K. A., Rahimi, Y., Shrestha, S., Hunt, E. A., & Deo, S. K. (2008). Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Analytical Chemistry, 80, 2319.

    Google Scholar 

  • Zhang, G. J., Chua, J. H., Chee, R. E., Agarwal, A., & Wong, S. M. (2009). Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors & Bioelectronics, 24, 2504.

    Google Scholar 

  • Sioss, J. A., et al. (2012). Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: response using PCA3 as a prostate cancer marker. Nanomedicine : Nanotechnology, Biology, and Medicine, 8, 1017.

    Google Scholar 

  • Driskell, J. D., Primera-Pedrozo, O. M., Dluhy, R. A., Zhao, Y., & Tripp, R. A. (2009). Quantitative surface-enhanced Raman spectroscopy based analysis of microRNA mixtures. Applied Spectroscopy, 63, 1107.

    Google Scholar 

  • Fang, S., Lee, H. J., Wark, A. W., & Corn, R. M. (2006). Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. Journal of the American Chemical Society, 128, 14044.

    Google Scholar 

  • Nasheri, N., et al. (2011). An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Analytical Biochemistry, 412, 165.

    Google Scholar 

  • Sipova, H., et al. (2010). Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Analytical Chemistry, 82, 10110.

    Google Scholar 

  • Wark, A. W., Lee, H. J., & Corn, R. M. (2008). Multiplexed detection methods for profiling microRNA expression in biological samples. Angewandte Chemie, 47, 644.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Z., & Yu, Y. H. (2007). Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosensors & Bioelectronics, 22, 933.

    Google Scholar 

  • Gao, Z., & Yang, Z. (2006). Detection of MicroRNAs Using Electrocatalytic Nanoparticle Tags. Analytical Chemistry, 78, 1470.

    Google Scholar 

  • Peng, Y., & Gao, Z. (2011). Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Analytical Chemistry, 83, 820.

    Google Scholar 

  • Cissell, K. A., & Deo, S. K. (2009). Trends in microRNA detection. Analytical and Bioanalytical Chemistry, 394, 1109.

    Google Scholar 

  • Alhasan, A. H., et al. (2012). Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Analytical Chemistry, 84, 4153.

    Google Scholar 

  • Chan, H. M., Chan, L. S., Wong, R. N., & Li, H. W. (2010). Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Analytical Chemistry 82, 6911.

    Google Scholar 

  • Meldrum, D. (2000a). Automation for genomics, part one: preparation for sequencing. Genome Research 10, 1081.

    Google Scholar 

  • Meldrum, D. (2000b). Automation for genomics, part two: sequencers, microarrays, and future trends. Genome Research, 10, 1288.

    Google Scholar 

  • Ramskold, D., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30, 777.

    Google Scholar 

  • Mustafi, D., et al. (2013). Evolutionarily conserved long intergenic noncoding RNAs in the eye. Human Molecular Genetics, 22, 2992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Snyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jahaniani, F. et al. (2013). Emerging Technologies to Study Long Non-coding RNAs. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_7

Download citation

Publish with us

Policies and ethics