Skip to main content

pH Regulation

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci. 2010;123(Pt 3):441–50.

    Article  CAS  PubMed  Google Scholar 

  • Allen RJ, Kirk K. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem. 2004;279(12):11264–72.

    Article  CAS  PubMed  Google Scholar 

  • Augagneur Y, Jaubert L, Schiavoni M, Pachikara N, Garg A, Usmani-Brown S, et al. Identification and functional analysis of the primary pantothenate transporter, PfPAT, of the human malaria parasite Plasmodium falciparum. J Biol Chem. 2013;288(28):20558–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, et al. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 2003;31(1):212–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biagini GA, Pasini EM, Hughes R, De Koning HP, Vial HJ, O’Neill PM, et al. Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood. 2004;104(10):3372–7.

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Shaw MK, Margos G, Sinden RE. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology. 1997;115(Pt 1):1–7.

    Article  PubMed  Google Scholar 

  • Boron WF, Boulpaep EL, editors. Medical physiology. 2nd ed. Philadelphia: Saunders; 2009.

    Google Scholar 

  • Bosia A, Ghigo D, Turrini F, Nissani E, Pescarmona GP, Ginsburg H. Kinetic characterization of Na+/H+ antiport of Plasmodium falciparum membrane. J Cell Physiol. 1993;154(3):527–34.

    Article  CAS  PubMed  Google Scholar 

  • Carter V, Nacer AM, Underhill A, Sinden RE, Hurd H. Minimum requirements for ookinete to oocyst transformation in Plasmodium. Int J Parasitol. 2007;37(11):1221–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desai SA. Ion and nutrient uptake by malaria parasite-infected erythrocytes. Cell Microbiol. 2012;14(7):1003–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desai SA, Krogstad DJ, McCleskey EW. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 1993;362(6421):643–6.

    Article  CAS  PubMed  Google Scholar 

  • Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elliott JL, Saliba KJ, Kirk K. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem J. 2001;355(Pt 3):733–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • English M, Sauerwein R, Waruiru C, Mosobo M, Obiero J, Lowe B, et al. Acidosis in severe childhood malaria. QJM. 1997;90(4):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Guttery DS, Pittman JK, Frenal K, Poulin B, McFarlane LR, Slavic K, et al. The Plasmodium berghei Ca2+/H+ exchanger, PbCAX, is essential for tolerance to environmental Ca2+ during sexual development. PLoS Pathog. 2013;9(2):e1003191.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y. Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem. 2000;275(44):34353–8.

    Article  CAS  PubMed  Google Scholar 

  • Hayward R, Saliba KJ, Kirk K. The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance. J Cell Sci. 2006;119(Pt 6):1016–25.

    Article  CAS  PubMed  Google Scholar 

  • Hegge S, Kudryashev M, Barniol L, Frischknecht F. Key factors regulating Plasmodium berghei sporozoite survival and transformation revealed by an automated visual assay. FASEB J. 2010;24(12):5003–12.

    Article  CAS  PubMed  Google Scholar 

  • Henry RI, Cobbold SA, Allen RJ, Khan A, Hayward R, Lehane AM, et al. An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum. J Biol Chem. 2010;285(24):18615–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karasov AO, Boothroyd JC, Arrizabalaga G. Identification and disruption of a rhoptry-localized homologue of sodium hydrogen exchangers in Toxoplasma gondii. Int J Parasitol. 2005;35(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  • Kirk K. Membrane transport in the malaria-infected erythrocyte. Physiol Rev. 2001;81(2):495–537.

    CAS  PubMed  Google Scholar 

  • Klonis N, Tan O, Jackson K, Goldberg D, Klemba M, Tilley L. Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in Plasmodium falciparum. Biochem J. 2007;407(3):343–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn Y, Rohrbach P, Lanzer M. Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin. Cell Microbiol. 2007;9(4):1004–13.

    Article  CAS  PubMed  Google Scholar 

  • Lehane AM, Kirk K. Chloroquine resistance-conferring mutations in pfcrt give rise to a chloroquine-associated H + leak from the malaria parasite’s digestive vacuole. Antimicrob Agents Chemother. 2008;52(12):4374–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehane AM, Saliba KJ, Allen RJ, Kirk K. Choline uptake into the malaria parasite is energized by the membrane potential. Biochem Biophys Res Commun. 2004;320(2):311–7.

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Marchesini N, Moreno SN, Docampo R. A plant-like vacuolar H+-pyrophosphatase in Plasmodium falciparum. FEBS Lett. 1999;460:217–20.

    Article  CAS  PubMed  Google Scholar 

  • MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchesini N, Vieira M, Luo S, Moreno SN, Docampo R. A malaria parasite-encoded vacuolar H+-ATPase is targeted to the host erythrocyte. J Biol Chem. 2005;280(44):36841–7.

    Article  CAS  PubMed  Google Scholar 

  • Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol. 2005;6(3):R26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin RE, Ginsburg H, Kirk K. Membrane transport proteins of the malaria parasite. Mol Microbiol. 2009a;74(3):519–28.

    Article  CAS  PubMed  Google Scholar 

  • Martin RE, Marchetti RV, Cowan AI, Howitt SM, Broer S, Kirk K. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009b;325(5948):1680–2.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh MT, Drozdowicz YM, Laroiya K, Rea PA, Vaidya AB. Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Mol Biochem Parasitol. 2001;114:183–95.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh MT, Vaidya AB. Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. Int J Parasitol. 2002;32(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Miranda K, de Souza W, Plattner H, Hentschel J, Kawazoe U, Fang J, et al. Acidocalcisomes in Apicomplexan parasites. Exp Parasitol. 2008;118(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Hayashi M, Yatsushiro S, Yamamoto A. Vacuolar proton pumps in malaria parasite cells. J Bioenerg Biomembr. 2003;35(4):367–75.

    Article  CAS  PubMed  Google Scholar 

  • Rotmann A, Sanchez C, Guiguemde A, Rohrbach P, Dave A, Bakouh N, et al. PfCHA is a mitochondrial divalent cation/H+ antiporter in Plasmodium falciparum. Mol Microbiol. 2010;76(6):1591–606.

    Article  CAS  PubMed  Google Scholar 

  • Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saliba KJ, Kirk K. pH regulation in the intracellular malaria parasite, Plasmodium falciparum: H+ extrusion via a V-type H+-ATPase. J Biol Chem. 1999;274(47):33213–9.

    Article  CAS  PubMed  Google Scholar 

  • Saliba KJ, Kirk K. H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem. 2001;276(21):18115–21.

    Article  CAS  PubMed  Google Scholar 

  • Saliba KJ, Allen RJ, Zissis S, Bray PG, Ward SA, Kirk K. Acidification of the malaria parasite’s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem. 2003;278(8):5605–12.

    Article  CAS  PubMed  Google Scholar 

  • Shaw MK, Roos DS, Tilney LG. Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology. 1998;117(Pt 5):435–43.

    Article  CAS  PubMed  Google Scholar 

  • Spillman NJ, Allen RJ, Kirk K. Acid extrusion from the intraerythrocytic malaria parasite is not via a Na+/H+ exchanger. Mol Biochem Parasitol. 2008;162(1):96–9.

    Article  CAS  PubMed  Google Scholar 

  • Spillman NJ, Allen RJ, Kirk K. Na+ extrusion imposes an acid load on the intraerythrocytic malaria parasite. Mol Biochem Parasitol. 2013a;189(1–2):1–4.

    Article  CAS  PubMed  Google Scholar 

  • Spillman NJ, Allen RJW, McNamara CW, Yeung BKS, Winzeler EA, Diagana TT, et al. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe. 2013b;13(2):227–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Schalkwyk DA, Chan XW, Misiano P, Gagliardi S, Farina C, Saliba KJ. Inhibition of Plasmodium falciparum pH regulation by small molecule indole derivatives results in rapid parasite death. Biochem Pharmacol. 2010;79(9):1291–9.

    Article  PubMed  Google Scholar 

  • Wang P, Wang Q, Sims PF, Hyde JE. Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol. 2007;154(1):40–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wunderlich J, Rohrbach P, Dalton JP. The malaria digestive vacuole. Front Biosci. 2012;4:1424–48.

    Article  Google Scholar 

  • Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J. 1984;3(11):2695–700.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Jane Spillman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Spillman, N.J., Tilley, L. (2013). pH Regulation. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics