Skip to main content

Osmotic Opening of the BBB for Drug Treatment of Brain Tumors (Focus on Methodological Issues)

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

  • 3626 Accesses

Abstract

The blood–brain barrier (BBB) is a complex, functional barrier composed of endothelial cells, pericytes, astrocytic endfeet, and neuronal cells. This highly organized unit expresses a selective permeability for molecules that possess adequate molecular weight and sufficient liposolubility. Unfortunately, many potential therapeutic agents do not cross the BBB. As the BBB limitation has become more and more acknowledged, many innovative surgical and pharmacological strategies have been developed to circumvent it. This chapter focuses on the osmotic opening of the BBB. Since its inception by Rapoport in 1972, preclinical studies have provided important information on the extent of BBB permeation using this strategy. Neuwelt and colleagues further developed the osmotic opening of the BBB and brought it to the clinic. However, many questions remain as to the detailed physiology of the procedure, its long-term physiological impacts, and its best application to the clinic. Here we describe the results from ongoing studies relating to the spatial and temporal distribution of molecules after osmotic BBB breaching as well as the window of BBB permeabilization. We also summarize recent clinical series highlighting promising results in the application of this procedure. Finally, we discuss different approaches used to maximize the reach and efficacy of the procedure as well as to measure its physiological impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Bellavance MA, Blanchette M, Fortin D (2008) Recent advances in blood–brain barrier disruption as a CNS delivery strategy. AAPS J 10(1):166–177

    Article  CAS  PubMed  Google Scholar 

  • Blanchette M, Fortin D (2011) Blood–brain barrier disruption in the treatment of brain tumors. Methods Mol Biol 686:447–463

    Article  CAS  PubMed  Google Scholar 

  • Blanchette M, Michaud K, Fortin D (2012) A new method of quantitatively assessing the opening of the blood–brain barrier in murine animal models. J Neurosci Methods 207(2):125–129. doi:10.1016/j.jneumeth.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  • Blanchette M, Pellerin M, Tremblay L, Lepage M, Fortin D (2009) Real-time monitoring of gadolinium diethylenetriamine penta-acetic acid during osmotic blood–brain barrier disruption using magnetic resonance imaging in normal wistar rats. Neurosurgery 65(2):344–350. doi:10.1227/01.NEU.0000349762.17256.9E, discussion 350–351

    Article  PubMed  Google Scholar 

  • Blanchette M, Tremblay L, Lepage M, Fortin D. Impact of Drug Size on Brain Tumor and Brain Parenchyma Delivery with and without Blood-Brain Barrier Disruption. submitted to Clinical cancer research (in preparation)

    Article  PubMed  Google Scholar 

  • Blasberg R, Groothius D, Molnar P (1990) A review of hyperosmotic blood–brain barrier disruption in seven experimental brain tumor models. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood–brain barrier. Elsevier, Amsterdam, pp 197–220

    Google Scholar 

  • Boyle FM, Eller SL, Grossman SA (2004) Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro Oncol 6(4):300–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradbury MWB (1986) Appraisal of the role of endothelial cells and glia in barrier breakdown. In: Suckling AJ, Rumsby MG, Bradbury MWB (eds) The blood–brain barrier in health and disease. Ellis Horwood, Chichester, England, pp 128–129

    Google Scholar 

  • Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–325

    Article  CAS  PubMed  Google Scholar 

  • Brodie BB, Kurz H, Schanker LS (1960) The importance of dissociation constant and lipid-solubility in influencing the passage of drugs into the cerebrospinal fluid. J Pharmacol 130:20–25

    CAS  Google Scholar 

  • Cohen Z, Bonvento G, Lacombe P, Hamel E (1996) Serotonin in the regulation of brain microcirculation. Prog Neurobiol 50(4):335–362

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17(8):894–904

    Article  CAS  PubMed  Google Scholar 

  • Cosolo WC, Martinello P, Louis WJ, Christophidis N (1989) Blood–brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 256(2 Pt 2):R443–R447

    CAS  PubMed  Google Scholar 

  • Davson H, Oldendorf WH (1967) Symposium on membrane transport. Transport in the central nervous system. Proc R Soc Med 60(4):326–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Ann Rev Pharmacol Toxicol 47:323–355

    Article  Google Scholar 

  • de Boer AG, van der Sandt IC, Gaillard PJ (2003) The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    Article  PubMed  Google Scholar 

  • Deeken JF, Loscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Doolittle ND, Miner ME, Hall WA et al (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood–brain barrier for the treatment of patients with malignant brain tumors. Cancer 88(3):637–647

    Article  CAS  PubMed  Google Scholar 

  • Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK (2011) The biology of brain metastases-translation to new therapies. Nat Rev Clin Onc 6:344–356

    Google Scholar 

  • Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K (1988) Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci 529:21–30

    Article  CAS  PubMed  Google Scholar 

  • Finlay JL, Zacharoulis S (2005) The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical—and futuristic—perspective. J Neurooncol 75(3):253–266

    Article  CAS  PubMed  Google Scholar 

  • Fortin D, Adams R, Gallez A (2004) A blood–brain barrier disruption model eliminating the hemodynamic effect of ketamine. Can J Neurol Sci 31(2):248–253

    PubMed  Google Scholar 

  • Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer 103(12):2606–2615

    Article  PubMed  Google Scholar 

  • Fortin D, Gendron C, Boudrias M, Garant MP (2007) Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in the treatment of cerebral metastasis. Cancer 109(4):751–760. doi:10.1002/(ISSN)1097-0142

    Article  CAS  PubMed  Google Scholar 

  • Fortin D, McAllister LD, Nesbit G et al (1999) Unusual cervical spinal cord toxicity associated with intra-arterial carboplatin, intra-arterial or intravenous etoposide phosphate, and intravenous cyclophosphamide in conjunction with osmotic blood brain-barrier disruption in the vertebral artery. AJNR Am J Neuroradiol 20(10):1794–1802

    CAS  PubMed  Google Scholar 

  • Fortin D, McCormick CI, Remsen LG, Nixon R, Neuwelt EA (2000) Unexpected neurotoxicity of etoposide phosphate administered in combination with other chemotherapeutic agents after blood–brain barrier modification to enhance delivery, using propofol for general anesthesia, in a rat model. Neurosurgery 47(1):199–207

    CAS  PubMed  Google Scholar 

  • Fortin D, Neuwelt EA (2002) Therapeutic manipulation of the blood-brain barrier. Neurobase-neurosurgery. 1st edn. Medlink CD-ROM

    Google Scholar 

  • Freedman FB, Johnson JA (1969) Equilibrium and kinetic properties of the Evans blue-albumin system. Am J Physiol 216(3):675–681

    CAS  PubMed  Google Scholar 

  • Gumerlock MK, Neuwelt EA (1990) The effects of anesthesia on osmotic blood–brain barrier disruption. Neurosurgery 26(2):268–277

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Zhu J, Zhao L, Luo Q, Jin X (2010) Expression and clinical significance of multidrug resistance proteins in brain tumors. J Exp Clin Cancer Res 29:122

    Google Scholar 

  • Hall WA, Doolittle ND, Daman M et al (2006) Osmotic blood–brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 77(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Huncharek M, Muscat J, Geschwind JF (1998) Multi-drug versus single agent chemotherapy for high grade astrocytoma; results of a meta-analysis. Anticancer Res 18(6B):4693–4697

    CAS  PubMed  Google Scholar 

  • Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res 18(2B):1303–1311

    CAS  PubMed  Google Scholar 

  • Kraemer DF, Fortin D, Doolittle ND, Neuwelt EA (2001) Association of total dose intensity of chemotherapy in primary central nervous system lymphoma (human non-acquired immunodeficiency syndrome) and survival. Neurosurgery 48(5):1033–1040, discussion 1040–1041

    Article  CAS  PubMed  Google Scholar 

  • Kraemer DF, Fortin D, Neuwelt EA (2002) Chemotherapeutic dose intensification for treatment of malignant brain tumors: recent developments and future directions. Curr Neurol Neurosci Rep 2(3):216–224

    Article  PubMed  Google Scholar 

  • Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42(5):1083–1099, discussion 1099–1100

    Article  CAS  PubMed  Google Scholar 

  • Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA (1998) Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 43(4):879–886, discussion 886–879

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Dallas S, Hong M, Bendayan R (2001) Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53(4):569–596

    Article  CAS  PubMed  Google Scholar 

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 1:22–76

    Article  Google Scholar 

  • Mathieu D, Fortin D (2006) The role of chemotherapy in the treatment of malignant astrocytomas. Can J Neurol Sci 33(2):127–140

    PubMed  Google Scholar 

  • McAllister LD, Doolittle ND, Guastadisegni PE et al (2000) Cognitive outcomes and long-term follow-up results after enhanced chemotherapy delivery for primary central nervous system lymphoma. Neurosurgery 46(1):51–60, discussion 60–51

    Article  CAS  PubMed  Google Scholar 

  • Muldoon LL, Nilaver G, Kroll RA, Pagel MA, Breakefield XO, Chiocca EA, Davidson BL, Weissleder R, Neuwelt EA (1995) Comparison of intracerebral inoculation and osmotic blood–brain barrier disruption for delivery of adenovirus, herpesvirus and iron oxide particles to normal rat brain. Am J Pathol 147:1840–1851

    CAS  PubMed  Google Scholar 

  • Neuwelt EA (ed) (1989) Implications of the blood–brain barrier and its manipulation, vol 1 and 2. Plenum Press, New York

    Google Scholar 

  • Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G (1998) Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res 4(6):1549–1555

    CAS  PubMed  Google Scholar 

  • Oztas B, Kucuk M (1995) Intracarotid hypothermic saline infusion: a new method for reversible blood–brain barrier disruption in anesthetized rats. Neurosci Lett 190(3):203–206

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  • Provenzale JM, Mukundan S, Dewhirst M (2005) The role of blood–brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol 185(3):763–767

    Article  Google Scholar 

  • Rapoport SI (1996) Modulation of blood–brain barrier permeability. J Drug Target 3(6):417–425

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Hori M, Klatzo I (1972) Testing of a hypothesis for osmotic opening of the blood–brain barrier. Am J Physiol 223(2):323–331

    CAS  PubMed  Google Scholar 

  • Rawson RA (1942) The binding of T-1824 and structurally related diazo dyes by the plasma proteins. Am J Physiol 138:708–717

    Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34(1):207–217

    Article  CAS  PubMed  Google Scholar 

  • Remsen LG, Pagel MA, McCormick CI, Fiamengo SA, Sexton G, Neuwelt EA (1999) The influence of anesthetic choice, PaCO2, and other factors on osmotic blood–brain barrier disruption in rats with brain tumor xenografts. Anesth Analg 88(3):559–567

    CAS  PubMed  Google Scholar 

  • Roman-Goldstein S, Clunie DA, Stevens J et al (1994) Osmotic blood–brain barrier disruption: CT and radionuclide imaging. AJNR Am J Neuroradiol 15(3):581–590

    CAS  PubMed  Google Scholar 

  • Saris SC, Blasberg RG, Carson RE et al (1991) Intravascular streaming during carotid artery infusions. Demonstration in humans and reduction using diastole-phased pulsatile administration. J Neurosurg 74(5):763–772

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Kawase T, Harada S, Takayama H, Suga S (1998) Effect of hyperosmotic solutions on human brain tumour vasculature. Acta Neurochirurgica 140(11):1135–1141, discussion 1141–1142

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC (2008) Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther 324(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Smith MW, Gumbleton M (2006) Endocytosis at the blood–brain barrier: from basic understanding to drug delivery strategies. J Drug Target 14(4):191–214

    Article  CAS  PubMed  Google Scholar 

  • Stern L, Gautier R (1921) Rapports entre le liquide céphalo-rachidien et la circulation sanquine. Arch Int Physiol 17:138–192

    Article  CAS  Google Scholar 

  • Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359(9311):1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Dietrich PY, Ostermann Kraljevic S et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20(5):1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Tosoni A, Ermani M, Brandes AA (2004) The pathogenesis and treatment of brain metastases: a comprehensive review. Crit Rev Oncol Hematol 52:199–215

    Article  PubMed  Google Scholar 

  • Van Den Bent MJ (2003) The role of chemotherapy in brain metastases. Eur J Cancer 39(15):2114–2120

    Article  PubMed  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH, Tarnawski M, Lossinsky AS (1994) A quantitative immunocytochemical study of the osmotic opening of the blood–brain barrier to endogenous albumin. J Neurocytol 23(12):792–800

    Article  CAS  PubMed  Google Scholar 

  • Williams PC, Henner WD, Roman-Goldstein S et al (1995) Toxicity and efficacy of carboplatin and etoposide in conjunction with disruption of the blood-brain tumor barrier in the treatment of intracranial neoplasms. Neurosurgery 37(1):17–27, discussion 27–28

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fortin M.D., F.R.C.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Fortin, D. (2014). Osmotic Opening of the BBB for Drug Treatment of Brain Tumors (Focus on Methodological Issues). In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_19

Download citation

Publish with us

Policies and ethics