Skip to main content

Drosophila Mutants of the Kynurenine Pathway As A Model for Ageing Studies

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

A search for Drosophila mutants with phenotypes similar to human diseases might help to unravel evolutionary conserved genes implicated in polygenic human disorders. Among these are neurodegenerative diseases, characterized by a late onset disturbance of memory, structural brain impairments and altered content of the intermediates of the kynurenine pathway. The ratio between kynurenate (KYNA) and 3-hydroxykynurenine (3-HOK) in the brain is a critical determinant of neuronal viability.Therefore, the Drosophila mutants cinnabar (KYNA excess) and cardinal (3-HOK excess) allow an evaluation of the specific roles of these metabolites which present in physiologic concentrations and mimic systemic administration. Previously we have demonstrated that the mutant cardinal can serve as a model for dementia and can help to unravel the earliest manifestations of brain dysfunction. Here we show that a state of the brain control of locomotor coordination characterized by the parameters of sound production in males results from the neuroprotective and neurotoxic effects of KYNA and 3-HOK accumulated in young and aged Drosophila mutants. The high instability of 1) cycle form and number in pulses; 2) of pulse amplitude and 3) rhythm in the courtship song of aged cardinal males are similar to the alterations in mutants with defective central complex of the brain The cardinal mutants demonstrate apoptosis in the brain after stress treatment. This might reflect the misbalance in the content of excitatory amino acids’ and the glycine site agonists revealed by HPLC-determination. The mutant cinnabar proved to be normal in respect of the parameters studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.Q. Wu, A. Rassoulpour, R. Schwarcz, Effect of systemic L-DOPA administration on extracellular kynurenate levels in the rat striatum, J. Neural Transm. 109, 239–249 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. J.B.P. Gramsbergen, W. Schmidt, W.A. Turski, R Schwarcz, Age-related changes in kynurenic acid production in rat brain, Brain Res. 588, 1–5 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. W. Danysz, C.G. Parsons, Glycine and N-Methyl-D-Aspartate receptors: Physiological significance and possible therapeutic applications, Pharmacol. Rev. 50, 597–664 (1998).

    PubMed  CAS  Google Scholar 

  4. F. Moroni, Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites, Eur. J. Pharmacol. 375, 87–100 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. H.Q. Wu, P. Guidetti, J.H. Goodman, M. Varasi, G. Ceresoli-Borroni, C. Speciale, H.E. Scharfman, R. Schwarcz, Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo, Neuroscience 97, 243–251,(2000).

    Article  PubMed  CAS  Google Scholar 

  6. B. Linsen, Tryptophan - ommochrome pathway in insects, Adv. Insect. Physiol. 10, 117–246 (1974).

    Google Scholar 

  7. K.M. Summers, A.J. Howells, N.A. Pyliotis, Biology of eye pigmentation in Insects, Adv. Insect. Physiol. 16, 119–167 (1982).

    CAS  Google Scholar 

  8. J. Ferr¨¦, Accumulation of kynurenic acid in the cinnabar mutant of D. melanogaster as revealed by thin-layer chromatography, Insect Biochem. 13, 289–294 (1983).

    Article  Google Scholar 

  9. W.D. Warren, S. Palmer, A.J. Howells, Molecular characterization of the cinnabar region of D. melanogaster: identification of the cinnabar transcription unit, Genetica 98, 249–262 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. J. Li, G. Li, Transamination of 3-hydroxykynurenine to produce xanthurenic acid: a major branch pathway of tryptophan metabolism in the mosquito, Aedes aegypti, during larval development, Insect Biochem. Mol. Biol. 27, 859–867 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. A. Ultsch, C.M. Schuster, B. Laube, H. Betz, B. Schmitt, Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly, FEBS Lett. 324, 171–177 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. A. Ramaekers, M.L. Parmentier, C. Lasnier, J. Bockaert, Y. Grau, Distribution of metabotropic glutamate receptor DmGlu-A in Drosophila melanogaster central nervous system, J. Comp. Neurol. 438, 213–225 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. M. Grauso, R.A. Reenan, E. Culetto, D.B. Sattelle. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in D. melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing, Genetics 160, 1519–1533 (2002).

    PubMed  CAS  Google Scholar 

  14. E. Savvateeva, A. Popov, N. Kamyshev, J. Bragina, M. Heisenberg, D. Senitz, J. Kornhuber, P. Riederer, Age-depedent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine, J. Neural. Transm. 107, 581–601 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. A. Popov, E. Savvateeva-Popova, N.G. Kamyshev, Peculiarities of acoustic communication in fruit flies Drosophila melanogaster, Sensory Systems 14, 60–74 (2000).

    Google Scholar 

  16. M. Gerlach, W. Gsell, J. Kornhuber, K. Jellinger, F. Pantuchek, P. Riederer, A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in the motor circuit of basal ganglia in Parkinson’s disease, Brain Res.741, 142–152 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. H.C. Bennet-Clark, A.W. Ewing, Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster. Anim. Behay. 17, 755–759 (1969).

    Article  Google Scholar 

  18. M. Gerlach, P. Riederer, Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man, J. Neural. Transm. 103, 987–1041 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. T. Alexi, C.V. Borlongan, R.L. Fault, C.E. Williams, R.G. Clark, P.D. Gluckman, P.E. Hughes, Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases, Prog. Neurobiol. 60, 409–470 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. M.Y.T. Globus, M.D. Ginsberg, R. Busto, Excitotoxic index: A biochemical marker of selective vulnerability, Neurosci. Lett. 127, 39–42 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. A. Popov, N. Sitnik, E. Savvateeva-Popova, R. Wolf, M. Heisenberg, The role of the brain centres in courtship sound production of Drosophila melanogaster, Russian J. Physiol. 87, 779–794 (2001).

    CAS  Google Scholar 

  22. A.A. Peixoto, J.C. Hall, Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila, Genetics 148, 827–838 (1998).

    PubMed  CAS  Google Scholar 

  23. H. Wei, P. Leeds, R-W. Chen, W. Wei, Y. Leng, D.E. Bredesen, D-M. Chuang, Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression, J. Neurochem. 75, 81–90 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Savvateeva-Popova, E.V., Popov, A.V., Heinemannt, T., Riederert, P. (2003). Drosophila Mutants of the Kynurenine Pathway As A Model for Ageing Studies. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_84

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics