Skip to main content

Alcoholic Beverage Fermentations

  • Chapter
Fermented Beverage Production

Abstract

Most alcoholic beverage fermentations are carried out using strains of the yeast Saccharomyces cerevisiae. Although traditionally brewers distinguished between ale yeast S. cerevisiae and lager yeast S. carlsbergensis, or S. uvarum as it was later called, it is now recognized that these two species are completely interfertile and should be considered as one, namely S. cerevisiae ([Gilliland, 1981]). However, this is not to say that lager yeasts do not have some distinctive features, since the ability of the classical lager yeast to produce α-galactosidase and metabolize melibiose is well established. Similarly, strains defined as S. diastaticus have a well-established ability to metabolize low-molecular-weight dextrins, since they possess a glucoamylase gene. However, these strains are now considered to be strains of S. cerevisiae rather than distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, D.R. (1984). Physiology and microbiology of Scotch whisky production. In Progress in Industrial Microbiology, Vol. 19, pp. 199-243. Edited by M.E. Bushell. Amsterdam: Elsevier.

    CAS  Google Scholar 

  • Berry, D.R. & Brown, C. (1987). Physiology of yeast growth. In Yeast Biotechnology, pp. 157-199. Edited by D.R. Berry, I. Russell & G.G. Stewart. London: Allen and Unwin.

    Chapter  Google Scholar 

  • Berry, D.R. & Watson, D.C. (1987). Production of organoleptic compounds. In Yeast Biotechnology, pp. 345-368. Edited by D.R. Berry, I. Russell & G.G. Stewart. London: Allen and Unwin.

    Chapter  Google Scholar 

  • Boles, E. & Hollenburg, C.P. (1997). The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21, 85-111.

    CAS  Google Scholar 

  • Bony, M., Didart, F., Camarasa, C., Ansanay, V., Dulau, L., Barre, P. & Dequin, C. (1997). Metabolic analysis of Saccharomyces cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410,452-456.

    Article  CAS  Google Scholar 

  • Boulton, R.B., Singleton, V.L., Bisson, L.F. & Kunkee, R.E. (1995). Principles and Practice of Winemaking, pp. 244-278. New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Charpentier, C. & Feuillat, M. (1993). Yeast autolysis. In Wine Microbiology and Biotechnology, pp. 225-242. Edited by G.H. Fleet. Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Diderich, J.A., Schepper, M., van Hoek, P., Luttik, M.A.H., van Dijken, J.P., Pronk, J.T., Klaassen, P., Boelens, H.F.M., de Mattos, R.J.T., van Dam, K. & Kruckeberg, A.L. (1999). Glucose uptake kinetics and transcription of HXT genes chemostat culture of Saccharomyces cerevisiae. J Biol Chem 274, 350-359.

    Article  Google Scholar 

  • Fahrasmane, L. &Ganou-Parfait, B. (1998). A review: Microbial flora of rum fermentation. J Appl Microbiol 84, 921-928.

    Article  CAS  Google Scholar 

  • Fleet, G.H. & Heard, G.M. (1993). Yeasts growth during fermentation. In Wine Microbiology and Biotechnology, pp. 27-54. Edited by G.H. Fleet. Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Gilliland, R.B. (1981). Brewing yeast. In Brewing Science, Vol. II, pp. 1-60. Edited by J.R.A. Pollock. London: Academic Press.

    Google Scholar 

  • Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, E, Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H. & Oliver, S.G. (1996). Life with 6000 genes. Science 214 (5287), 546, 563-567.

    Article  Google Scholar 

  • Henick-Kling, T. (1993). Malolactic fermentation. In Wine Microbiology and Biotechnology, pp. 289-326. Edited by G.H. Fleet. Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Herrero, M., Cuesta, I., Garcia, L.A. & Diaz, M. (1999). Changes in organic acids during malolactic fermentations at different temperatures in yeast fermented apple juice. J Inst Brew 105(3), 191-195.

    Article  CAS  Google Scholar 

  • Hough, J.S. (1985). Biotechnology of Malting and Brewing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Korhola, M., Karju, K. & Lehtonen, M. (1989). Fermentation. In Science and Technology of Whiskies, pp. 89-117. Edited by J.R. Piggott, R. Sharpe & R.E.B. Duncan. Harlow, England: Longman.

    Google Scholar 

  • Krampe, S., Stamm, O., Hollenberg, C.P. & Boles, E. (1998). Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441,343-347.

    Article  CAS  Google Scholar 

  • Kruger, L., Pickerall, A.T.W. & Axcell, B. (1992). The sensitivity of different brewing yeast strains to carbon dioxide inhibition, fermentation and production of flavor-active volatile compounds. J Inst Brew 98, 133-138.

    CAS  Google Scholar 

  • Kunkee, R.E. & Goswell, R. (1977). Table wines. In Economic Microbiology, Vol. 1, pp. 315-386. Edited by A.H. Rose. London: Academic Press.

    CAS  Google Scholar 

  • Leao, C. & van Uden, N. (1982). Effect of ethanol and other alcohols on the kinetics and characterisation parameters of thermal deaths in Saccharomyces cerevisiae. Biotechnol Bioeng 24, 1581-1590.

    Article  CAS  Google Scholar 

  • MacDonald, J., Reeve, P.T.V, Puddlesden, J.D. & White, EH. (1984). Current approaches to brewery fermentations. In Progress in Industrial Microbiology, Vol. 19, pp. 47-198. Edited by M.E. Bushell. Amsterdam: Elsevier.

    CAS  Google Scholar 

  • Martini, A. & Martini, A.V. (1990). Grape must fermentation past and present. In Yeast Technology, pp. 105-123. Edited by J.F.T. Spencer & D.M. Spencer. Berlin: Springer-Verlag.

    Google Scholar 

  • Narendranath, N.V, Hynes, S.H., Thomas, A.K. & Ingledew, W.M. (1997). Effect of lactobacilli on yeast-catalysed ethanol fermentations. Appl & Environ Microbiol 63(11), 4158-4163.

    CAS  Google Scholar 

  • Nelissen, B., DeWachter, R. & Goffeau, A. (1997). Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21, 113-134.

    Article  CAS  Google Scholar 

  • Nielsen, J.C. & Richelieu, M. (1999). Control of flavour development in wine during and after malolactic fermentation by Oenococcus oeni. Appl & Environ Microbiol 65(2), 740-745.

    CAS  Google Scholar 

  • Ozcan, S. & Johnston, M. (1999). Function and regulation of hexose transporters. Microbiol & Mol Biol Rev 63, 554.

    CAS  Google Scholar 

  • Ramsay, C.M. (1982). Physiological Control of Volatile Formation by Yeast in the Scotch Malt Whysky Fermentation. Ph.D. thesis. Glasgow, UK: University of Strathclyde.

    Google Scholar 

  • Ramsay, C.M. & Berry, D.R. (1983). Development of small scale mashing and fermentation systems for studies on malt whisky production. Eur J Appl Microbiol Biotechnol 18,207-213.

    Article  CAS  Google Scholar 

  • Rose, A.H. (1977). Alcoholic beverages. In Economic Microbiology, Vol. 1. London: Academic Press.

    Google Scholar 

  • Stewart, G.G. & Russell, I. (1987). Control of sugar and carbohydrate metabolism in yeast. In Yeast Biotechnology, pp. 277-310. Edited by D.R. Berry, I. Russell & G.G. Stewart. London: Allen and Unwin.

    Chapter  Google Scholar 

  • Valihout, H. & Formisyn, P. (1997). Purification of the malolactic enzyme from a Leuconostoc oenos strain and use in a membrane reactor for achieving the malolactic fermentation of wine. Biotech & Appl Biochem 23(3), 217-223.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berry, D.R., Slaughter, J.C. (2003). Alcoholic Beverage Fermentations. In: Lea, A.G.H., Piggott, J.R. (eds) Fermented Beverage Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0187-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0187-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47706-5

  • Online ISBN: 978-1-4615-0187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics