Skip to main content

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 14))

Abstract

The development of freeze-dried injectable pharmaceutical products has traditionally been a process of trial and error, both with respect to the composition of the formulation and the process conditions used during freeze-drying. Although this approach ultimately may result in an acceptable product, it is a time-consuming and labor-intensive process, and is unlikely to result in the highest quality product attainable or in a freeze-dry process which is optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ablett, S., Izzard, M. J., and Lillford, P. J., 1992a, Differential scanning calorimetrie study of frozen sucrose and glycerol solutions, J. Chem. Soc. Faraday Trans. 88:789–794.

    Article  CAS  Google Scholar 

  • Ablett, S., Clark, A. H., Izzard, M. J., and Lillford, P. J., 1992b, Modelling of heat capacity-temperature data for sucrose-water systems, J. Chem. Soc. Faraday Trans. 88:795–802.

    Article  CAS  Google Scholar 

  • Anchordoquy, T. J., and Carpenter, J. F., 1996, Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state, Arch. Biochem. Biophys. 332:231–238.

    Article  PubMed  CAS  Google Scholar 

  • Angell, C. A., 1995, Formation of glasses from liquids and biopolymers, Science 267:1924–1935.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa, T., Prestrelski, S. J., Kinney, W., and Carpenter, J. F., 1993. Factors affecting short-term and long-term stability of proteins, Adv. Drug Deliv. Rev. 10:1–28.

    Article  CAS  Google Scholar 

  • Bell, L. N., and Hageman, M. J., 1994, Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation, J. Agric. Food Chem. 42:2398–2401.

    Article  CAS  Google Scholar 

  • Blond, G., Simatos, D., and Catte, M., 1997, Modeling of the water-sucrose state diagram below 0°C, Carbohydrate Research 298:139–145.

    Article  CAS  Google Scholar 

  • Bogardus, J. B., 1982, Phase equilibria of nafcillin sodium-water, J. Pharm. Sci. 71:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J. F., Prestrelski, S. J., Anchordoguy, T. J., and Arakawa, T., 1994, Interactions of stabilizers with proteins during freezing and drying, in: Formulation and Delivery of Peptides and Proteins (J. L. Cleland and R. Langer, eds.), American Chemical Society, Washington, DC, pp. 134–147.

    Chapter  Google Scholar 

  • Cavatur, R. K., and Suryanarayanan, R., 1998, Characterization of frozen aqueous solutions by low temperature X-ray powder diffractometry, Pharm. Res. 15:194–199.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B. S., Kendrick, B. S., and Carpenter, J. F., 1996, Surface-induced denaturation of proteins during freezing and its inhibition by surfactants, J. Pharm. Sci. 85:1325–1330.

    Article  PubMed  CAS  Google Scholar 

  • Chongprasert, S., Griesser, U. J., Bottorff, A. T., Byrn, S. R., and Nail, S. L., 1997, Effects of process conditions on crystallization of pentamidine isethionate during freeze drying, J. Pharm. Sci. 87:1155–1160.

    Article  Google Scholar 

  • Chongprasert, S., Knopp, S. A., and Nail, S. L., 2001, Characterization of frozen solutions of glycine, J. Pharm. Sci. 90:1720–1728.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, N. J., and Craig, D. Q. M., 1996, Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis, Int. J. Pharm. 135:13–29.

    Article  CAS  Google Scholar 

  • Connelly, J. P., and Welch, J. V., 1993, Monitor lyophilization with mass spectrometer gas analysis, J. Parenteral Sci. Technol. 47:70–75.

    CAS  Google Scholar 

  • Costantino, H. R., Nguyen, T. H., and Hsu, C. C., 1996a, Fourier-transform infrared spectroscopy demonstrates that lyophilization alters the secondary structure of recombinant human growth hormone, Pharm. Sci. 2:229–232.

    CAS  Google Scholar 

  • Costantino, H. R., Schwendeman, S. P., Griebenow, K., Klibanov, A. M., and Langer, R., 1996b, The secondary structure and aggregation of lyophilized tetanus toxoid, J. Pharm. Sci. 85:1290–1293.

    Article  PubMed  CAS  Google Scholar 

  • Costantino, H. R., Andya, J. D., Shire, S. J., and Hsu, C. C., 1997a, Fourier-transform infrared spectroscopic analysis of the secondary structure of recombinant humanized immunoglobulin G, Pharma. Sci. 3:121–128.

    CAS  Google Scholar 

  • Costantino, H. R., Griebenow, K., Langer, R., and Klibanov, A. M., 1997b, On the pH memory of lyophilized compounds containing protein functional groups, Biotechnol. Bioeng. 53:345–348.

    Article  PubMed  CAS  Google Scholar 

  • Dong, A., Prestrelski, S. J., Allison, S. D., and Carpenter, J. F., 1995, Infrared spectroscopic studies of lyophilization and temperature-induced protein aggregation, J. Pharm. Sci. 84:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Duddu, S. P., and Dal Monte, P. R., 1997, Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody, Pharm. Res. 14:591–595.

    Article  PubMed  CAS  Google Scholar 

  • Duddu, S. P., and Weller, K., 1996, Importance of glass transition temperature in accelerated stability testing of amorphous solids: Case study using a lyophilized aspirin formulation, J. Pharm. Sci. 85:345–347.

    Article  PubMed  CAS  Google Scholar 

  • Duddu, S. P., Zhang, G., and Dal Monte, P. R., 1997, The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody, Pharm. Res. 14:596–600.

    Article  PubMed  CAS  Google Scholar 

  • Dushman, S., and Lafferty, J. M., 1962, Scientific Foundations of Vacuum Technique, Wiley, New York, Chapter 1.

    Google Scholar 

  • Eckhardt, B. M., Oeswein, J. Q., and Bewley, T. A., 1991, Effect of freezing on aggregation of human grown hormone, Pharma. Res. 11:1360–1364.

    Article  Google Scholar 

  • Elliot, A., and Ambrose, E. J., 1950, Structure of synthetic polypeptides, Nature 165:921–922.

    Article  Google Scholar 

  • Evans, S. A., Morris, K. R., MacKenzie, A. P., and Lordi, N. G., 1995, Dielectric characterization of thermodynamic first order events in model frozen systems intended for lyophilization, J. Parenteral. Sci. Technol. 49:2–8.

    CAS  Google Scholar 

  • Flink, J. M., and Gejl-Hansen, F., 1978, Two simple freeze drying microscope stages, Rev. Sei. Instrum. 49:269–271.

    Article  CAS  Google Scholar 

  • Flink, J. M., Gejl-Hansen, F., and Karel, M., 1973, Microscopic observations of the freeze drying of volatile-containing model food compounds, J. Food Sci. 38:1174–1178.

    Article  Google Scholar 

  • Franks, F., 1990, Freeze-drying: From empiricism to predictability, Cryo-Letters 11:93–110.

    Google Scholar 

  • Freedman, M., Whittum, J. H., and Rosano, H. L., 1972, Temperature gradient freeze drying microscope stage, J. Food Sci. 37:492–493.

    Article  Google Scholar 

  • Gatlin, L. A., 1991, Kinetics of a phase transition in a frozen solution, Dev. Biol Stand. 74:93–104.

    Google Scholar 

  • Gomez, G., Pikal, M. J., and Rodriguez-Hornedo, N., 2001, Effect of initial buffer composition on pH changes during far from equilibrium freezing of sodium phosphate buffer solutions, Pharm. Res. 18:90–97.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, B. C., and Zografi, G., 1997, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci. 86:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, B. C., Shamblin, S. L., and Zografi, G., 1995, Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures, Pharm. Res. 12:799–806.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, B. C., Dalton, C. R., Pikal, M. J., and Shamblin, S. L., 1998, A pragmatic test of a simple calorimetrie method for determining the fragility of some amorphous pharmaceutical materials, Pharm. Res. 15:762–67.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R. K., 1986, Nuclear Magnetic Resonance Spectroscopy. A Physicochemical View, Wiley, New York, Chapter 3.

    Google Scholar 

  • Hatley, R. H. M., Franks, F., Day, H., and Byth, B., 1986, Subzero temperature preservation of reactive fluids in the undercooled state. I. The reduction of potassium ferrricyanide by potassium cyanide, Biophys. Chem. 24:41–46.

    Article  PubMed  CAS  Google Scholar 

  • Hatley, R. H. M., Franks, F., and Day, H., 1986, Subzero temperature preservation of reactive fluids in the undercooled state. II. The effect on the oxidation of ascorbic acid of freeze concentration and undercooling, Biophys. Chem. 24:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M. C., Carpenter, J. F., and Randolph, T. W., 1996, Effects of phase separating systems on lyophilized hemoglobin, J. Pharm. Sci. 85:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M. C., Carpenter, J. F., and Randolph, T. W., 1997, Manipulation of lyophilization-induced phase separation: Implications for pharmaceutical proteins, Biotechnol. Prog. 13: 590–596.

    Article  PubMed  CAS  Google Scholar 

  • Hemminga, M. A., Roozen, M., and Walstra, P., 1993, Molecular motions and the glassy state, in: The Glassy State in Foods (J. M. V. Blanshard and P. J. Lillford, eds.), Nottingham University Press, Loghborough, Leicestershire, UK, pp. 157–171.

    Google Scholar 

  • Her, L. M., and Nail, S. L., 1994, Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry, Pharm. Res. 11:54–59.

    Article  PubMed  CAS  Google Scholar 

  • Her, L. M., Deras, M., and Nail, S. L., 1995, Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes, Pharm. Res. 11:768–772.

    Article  Google Scholar 

  • Herman, B. D., Sinclair, B. D., Milton, N., and Nail, S. L., 1994, The effect of bulking agent on the solid-state stability of freeze-dried methylprednisolone sodium succinate, Pharm. Res. 11:1467–1473.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, C. C., Ward, C. A., Pearlman, R., Nguyen, H. M., Yeung, D. A., and Curley, J. G., 1992, Determining the optimum residual moisture in lyophilized protein pharmaceuticals, Dev. Biol. Stand. 74:255–271.

    PubMed  CAS  Google Scholar 

  • Hsu, C. C., Nguyen, H. M., Yeung, D. A., Brooks, D. A., Koe, G. S., Bewley, T. A., and Pearlman, R., 1995, Surface denaturation at solid-void interface—A possible pathway by which opalescent particulates form during the storage of lyophilized tissue-type plasminogen activator at high temperature, Pharm. Res. 12:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Izutsu, K., Yoshioka, S., and Terao, T., 1993, Decreased protein-stabilizing effects of cryoprotectants due to crystallization, Pharm. Res. 10:1232–1237.

    Article  PubMed  CAS  Google Scholar 

  • Izutsu, K., Yoshioka, S., and Terao, T., 1994, Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying, Chem. Pharm. Bull. 42:5–8.

    Article  CAS  Google Scholar 

  • Izutsu, K., Yoshioka, S., and Kojima, S., 1995, Effect of cyroprotectants on the eutectic crystallization of NaCl in frozen solutions studied by differential scanning calorimetry and broad-line pulsed NMR, Chem. Pharm. Bull. 43:1804–1806.

    Article  CAS  Google Scholar 

  • Izutsu, K., Yoshioka, S., Kojima, S., Randolph, T. W., and Carpenter, J. F., 1996, Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: Phase separation between incompatible polymers, Pharm. Res. 13:1393–1400.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M., and Mantsch, H. H., 1995, The use and misuse of FTIR spectroscopy in the determination of protein structure, Crit. Rev. Biochem. Mol. Biol. 30:95–120.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, S., and Nail, S. L., 1998, Effect of process conditions on recovery of protein activity after freezing and freeze-drying, Eur. J. Pharm. Biopharm. 45:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Johari, G. P., Hallbrucker, A., and Mayer, E., 1987, The glass-liquid transition of hyperquenched water, Nature 330:552–553.

    Article  CAS  Google Scholar 

  • Karel, M., Buera, M. P., and Roos, Y., 1993, Effects of glass transitions on processing and storage, in: The Glassy State in Foods (J. M. V. Blanchard and P. J. Lillford, eds.), Nottingham University Press, Nottingham, UK, pp. 13–34.

    Google Scholar 

  • Kim, A. I., Akers, M. J., and Nail, S. L., 1998, The physical state of mannitol after freeze-drying: Effects of mannitol concentration, freezing rate, and a non-crystallizing cosolute, J. Pharm. Sci. 87:931–935.

    Article  PubMed  CAS  Google Scholar 

  • Klug, H. P., and Alexander, L. E., 1976, X-Ray Diffraction Procedures for Poly cry stalline and Amorphous Materials, Wiley, New York.

    Google Scholar 

  • Knopp, S. A., Chongprasert, S., and Nail, S. L., 1998, The relationship between the MDSC thermogram of frozen sucrose solutions and collapse during freeze-drying, J. Thermal Anal. 54:659–672.

    Article  CAS  Google Scholar 

  • Kochs, M., Schwindke, P., and Korber, C., 1989, A microscope stage for the dynamic observation of freezing and freeze-drying in solutions and cell suspensions, Cryo-Letters 10:401–420.

    Google Scholar 

  • Lam, X. M., Costantino, H. R., Overcashier, D. E., Nguyen, T. H., and Hsu, C. C., 1996, Replacing succinate with glycolate buffer improves the stability of lyophilized interferon-y, Int. J. Pharm. 142:85–95.

    Article  CAS  Google Scholar 

  • Larsen, S. S., 1973, Studies on stability of drugs in frozen systems. VI. The effect of freezing upon pH for buffered aqueous solutions, Arch. Pharm. Chem. Sci. Ed. 1:433–445.

    CAS  Google Scholar 

  • MacKenzie, A. P., 1964, Apparatus for microscopic observations during freeze-drying, Biodynamica 9:213–222.

    PubMed  CAS  Google Scholar 

  • MacKenzie, A. P., 1977a, The physico-chemical basis for the freeze drying process, Dev. Biol. Stand. 36:51–67.

    CAS  Google Scholar 

  • MacKenzie, A. P., Derbyshire, W., and Reid, D. S., 1977, Non-equilibrium freezing behavior of aqueous systems, Phil. Trans. R. Soc. Lond. B 278:167–176.

    Article  CAS  Google Scholar 

  • Mansfield, M. L., 1993, An overview of theories of the glass transition, in: The Glassy State in Foods (J. M. V. Blanshard and P. J. Lillford, eds.), Nottingham University Press, Loghborough, Leicestershire, UK, pp. 103–122.

    Google Scholar 

  • Millqvist-Fureby, A., Malmsten, M., and Bergenstahl, B., 1999, Surface characterisation of freeze-dried protein/carbohydrate mixtures, Int. J. Pharm. 191:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N., and Nail, S. L., 1996, The physical state of nafcillin sodium in frozen aqueous solutions and freeze-dried powders, Pharm. Dev. Technol. 1:269–277.

    Article  PubMed  CAS  Google Scholar 

  • Milton, N., Pikal, M. J., Roy, M. L., and Nail, S. L., 1997. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization, PDA J. Pharm. Sci.Technol. 51:7–16.

    PubMed  CAS  Google Scholar 

  • Morris, K. R., Evans, S. A., MacKenzie, A. P., Scheule, D., and Lordi, N. G., 1994, Prediction of lyophile collapse temperature by dielectric analysis, J. Parenteral Sci. Techol. 48:318–329.

    CAS  Google Scholar 

  • Murase, N., and Franks, F., 1989, Salt precipitation during the freeze-concentration of phosphate buffer solutions, Biophys. Chem. 34:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Nail, S. L., 1980, The effect of chamber pressure on heat transfer in the freeze-drying of parenteral solutions, J. Parenteral Drug Assoc. 34:358–368.

    CAS  Google Scholar 

  • Nail, S. L., and Johnson, J. W., 1992, Methodology for in-process determination of residual water in freeze dried products, Dev. Biol. Std. 74:137–151.

    CAS  Google Scholar 

  • Nail, S. L., Her, L. M., Proffitt, C. P. B., and Nail, L. L., 1994, An improved microscope stage for direct observation of freezing and freeze-drying, Pharm. Res. 11:1098–1100.

    Article  PubMed  CAS  Google Scholar 

  • Oguchi, T., Okada, M., Yonemochi, E., Yamamoto, K., and Nakai, Y., 1990, Freeze-drying of drug-additive binary systems III. Crystallization of a-cyclodextrin inclusion complex in freezing process, Int. J. Pharm. 61:27–34.

    Article  CAS  Google Scholar 

  • Orii, Y., and Morita, M., 1977, Measurement of the pH of frozen buffer solutions by using pH indicators, J. Biochem. 81:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Osterberg, T., and Wadsten, T., 1999, Physical state of L-histidine after freeze-drying and long-term storage, Eur. J. Pharm. Sci. 8:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Pikal, M. J., 1985, Use of laboratory data in freeze-dry process design: Heat and mass transfer coefficients and computer simulation of freeze-drying, J. Parenteral Sci. Tech. 39:115–138.

    CAS  Google Scholar 

  • Pikal, M. J., and Shah, S., 1997, Intravial distribution of moisture during the secondary drying stage of freeze-drying, PDA J. Pharm. Sci. Technol. 51:17–24.

    PubMed  CAS  Google Scholar 

  • Pikal, M. J., Lukes, A. L., Lang, J. E., and Gaines, K., 1978, Quantitative crystallinity determinations for β-lactam antibiotics by solution calorimetry: Correlations with stability, J. Pharm. Sci. 67:767–772.

    Article  PubMed  CAS  Google Scholar 

  • Pikal, M. J., Shah, S., Senior, D., and Lang, J. E., 1983a, Physical chemistry of freeze-drying: Measurement of sublimation rates for frozen aqueous solutions by a microbalance technique, J. Pharm. Sci. 72:635–650.

    Article  PubMed  CAS  Google Scholar 

  • Pikal, M. J., Shah, S., and Roy, M. L., 1984, Mass and heat transfer in vial freeze-drying of pharmaceuticals: Role of the vial, J. Pharm. Sci. 73:1224–1237.

    Article  PubMed  CAS  Google Scholar 

  • Pikal, M. J., Shah, S., Roy, M. L., and Putman, R., 1990, The secondary drying stage of freeze-drying: Drying kinetics as a function of temperature and chamber pressure, Int. J. Pharm. 60:203–217.

    Article  CAS  Google Scholar 

  • Pincock, R. E., and Kiovsky, T. E., 1966, Kinetics of reactions in frozen solutions, J. Chem. Ed. 43:358–360.

    Article  CAS  Google Scholar 

  • Powell, M. F., Fleitman, J., Sanders, L. M., and Si, V. C., 1994, Peptide liquid crystals: Inverse correlation of kinetic formation and thermodynamic stability in aqueous solution, Pharm. Res. 11:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  • Prestrelski, S. J., Pikal, K. A., and Arakawa, T., 1995, Optimization of lyophilization conditions for recombinant human interleukin-2 by dried-state conformational analysis using Fourier-transform infrared spectroscopy, Pharm. Res. 12:1250–1259.

    Article  PubMed  CAS  Google Scholar 

  • Prestrelski, S. J., Arakawa, T., and Carpenter, J. F., 1994, Structure of proteins in lyophilized formulations using Fourier transform infrared spectroscopy, in: Formulation and Delivery of Peptides and Proteins (J. L. Cleland and R. Langer, eds.), American Chemical Society, Washington, DC, pp. 148–170.

    Chapter  Google Scholar 

  • Randolph, T. W., 1997, Phase separation of excipients during lyophilization: Effects on protein stability, J. Pharm. Sci. 86:1198–1203.

    Article  PubMed  CAS  Google Scholar 

  • Reading, M., Luget, A., and Wilson, R., 1994, Modulated differential scanning calorimetry, Thermochim. Acta 238:295–307.

    Article  CAS  Google Scholar 

  • Remmele, R. L., Stoshnoff, C., and Carpenter, J. F., 1997, Real-time in-situ monitoring of lysozyme during lyophilization using infrared spectroscopy: Dehydration stress in the presence of sucrose, Pharm. Res. 14:1548–1555.

    Article  PubMed  CAS  Google Scholar 

  • Rey, L. R., 1957, Dispositif pour l’examen microscopique aux basses température, Experientia 13:201–202.

    Article  PubMed  CAS  Google Scholar 

  • Roy, M. L., and Pikal, M. J., 1989, Process control in freeze-drying: Determination of the end point of sublimation drying by an electronic moisture sensor, J. Parenteral Sci. Technol. 43:60–66.

    CAS  Google Scholar 

  • Roy, M. L., Pikal, M. J., Rickard, E. C., and Maloney, A. M., 1991, The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: A test of the WLF glass transition theory, Dev. Biol. Stand. 74:323–340.

    Google Scholar 

  • Sarciaux, J. M. E., and Hageman, M. J., 1997, Effects of bovine somatotropin (rbSt) concentration at different moisture levels on the physical stability of sucrose in freeze-dried rbSt/sucrose mixtures, J. Pharm. Sci. 86:365–371.

    Article  PubMed  CAS  Google Scholar 

  • Sarciaux, J. M., Mansour, S., Hageman, M. J., and Nail, S. L., 1999, Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying, J. Pharm. Sci. 88:1354–1361.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, M., Aaviksaar, A., Haga, M., Ullmann, U., and Jakubke, H. D., 1991, Protease-catalyzed peptide synthesis in frozen aqueous systems: The “freeze concentration” model, Biomed. Biochim. Acta 50:S84–S89.

    PubMed  CAS  Google Scholar 

  • Searles, J. A., Carpenter, J. F., and Randolph, T. W., 2001a, Ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf, J. Pharm. Sci. 90:860–871.

    Article  PubMed  CAS  Google Scholar 

  • Searles, J. A., Carpenter, J. F., and Randolph, T. W., 2001b, Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg’ in pharmaceutical lyophilization, J. Pharm. Sci. 90:872–887.

    Article  PubMed  CAS  Google Scholar 

  • Shalaev, E. Y., and Franks, F., 1995, Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions, J. Chem. Soc. Faraday Trans. 91:1511–1517.

    Article  CAS  Google Scholar 

  • Smith, G., Duffy, A. P., Shen, J., and Olliff, C. J., 1995, Dielectric relaxation spectroscopy and some applications in the pharmaceutical sciences, J. Pharm. Sci. 84:1029–1044.

    Article  PubMed  CAS  Google Scholar 

  • Spieles, G., Marx, T., Heschel, I., and Rau, G., 1995, Analysis of desorption and diffusion during secondary drying in vacuum freeze-drying of hydroxyethyl starch, Chem. Eng. Process 34:351–357.

    Article  CAS  Google Scholar 

  • Strambini, G. B., and Gabellieri, E., 1996, Proteins in frozen solutions: Evidence of ice-induced partial unfolding, Biophys. J. 70:971–976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Surewicz, W. K., Mantsch, H. H., and Chapman, D., 1993, Determination of protein secondary structure by Fourier-transform infrared spectroscopy: A critical assessment, Biochemistry 32:389–394.

    Article  PubMed  CAS  Google Scholar 

  • Tarelli, E., and Wheeler, S. F., 1994, Drying from phosphate-buffered solutions can result in the phosporylation of primary and secondary alcohol groups of saccharides, hydroxylated amino acids, proteins, and glycoproteins, Anal. Biochem. 222:196–201.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, M. W., Byron, P. R., and DeLuca, P. P., 1990, The effects of formulation additives on the degradation of freeze-dried ribonuclease A, Pharm. Res. 7:1086–1091.

    Article  PubMed  CAS  Google Scholar 

  • Vadas, E. B., Toma, P., and Zografì, G., 1991, Solid-state phase transitions initiated by water vapor sorption of crystalline L-660,711, a leukotriene D4 receptor antagonist, Pharm. Res. 8:148–155.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, L., 1959, The effect of addition of sodium and potassium chloride to the reciprocal system: KH2PO4-Na2HPO4-H2O on pH and composition during freezing, Arch. Biochem. Biophys. 84:305–315.

    Article  PubMed  Google Scholar 

  • van den Berg, L., 1960, pH measurement at low temperatures using modified glass and calomel electrodes, Anal. Chem. 32:628–631.

    Article  Google Scholar 

  • van den Berg, L., 1966, pH changes in buffers and foods during freezing and subsequent storage, Cryobiology 3:236–242.

    Article  Google Scholar 

  • van den Berg, L., and Rose, D., 1959, Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: The reciprocal system KH2PO4-Na2HPO4-H2O, Arch. Biochem. Biophys. 81:319–329.

    Article  PubMed  Google Scholar 

  • Walter, H., Johansson, G., and Brooks, D. E., 1991. Partitioning in two-phase systems: Recent results, Anal. Biochem. 197:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Smith, D. L., Bray, R. C., Barber, M. J., Tsopanakis, A. D., and Vincent, S. P., 1977, Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy, Biochem. J. 167:593–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., and Kojima, S., 1996, Determination of molecular mobility of lyophilized bovine serum albumin and γ-globulin by solid-state 1H NMR and relation to aggregation susceptibility, Pharm. Res. 13:926–930.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., and Kojima, S., 1997a, Softening temperature of lyophilized bovine serum albumin and γ-globulin as measured by spin-spin relaxation time of protein protons, J. Pharm. Sci. 86:470–474.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., and Kojima, S., 1997b, Dependence of the molecular mobility and protein stability of freeze-dried γ-globulin formulations on the molecular weight of dextran. Pharm. Res. 14:736–741.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., Nakai, Y., and Kojima, S., 1998, Effect of high molecular mobility of polyvinyl alcohol) on protein stability of lyophilized γ-globulin formulations, J. Pharm. Sci. 87:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Zaslavsky, B. Y., et al., 1989, Structure of water as a key factor of phase separation in aqueous mixtures of two nonionic polymers, Polymer 30:2104–2110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nail, S.L., Jiang, S., Chongprasert, S., Knopp, S.A. (2002). Fundamentals of Freeze-Drying. In: Nail, S.L., Akers, M.J. (eds) Development and Manufacture of Protein Pharmaceuticals. Pharmaceutical Biotechnology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-0549-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0549-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-5127-6

  • Online ISBN: 978-1-4615-0549-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics