Skip to main content

Ethylene in Plant Physiology

  • Chapter
Ethylene

Abstract

Ethylene (C2H4) is a plant hormone that is involved in the regulation of many physiological responses (Abeles et al., 1992; Mattoo and Suttle, 1991; Reid, 1995). Initially designated as a “ripening hormone”, C2H4 is involved in almost all growth and developmental processes ranging from germination of seeds to senescence of various organs and in many responses to environmental stress. Ethylene production occurs in all plant organs, including roots, stems, leaves, buds, tubers, bulbs, flowers, and seeds, but the magnitude of C2H4 production varies from organ to organ and is dependent on growth and developmental processes. Recent scientific progress has increased the understanding of biosynthetic pathways and enzymes involved in C2H4 production including genetic control, leading to the development of several ways to manipulate C2H4 production by genetic alteration of plants (Kende, 1993; Fluhr and Mattoo, 1996; Zarembinski and Theologis, 1994; Stella et al, 1996; Woltering and de Vrije, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Aarnes, H., 1977, Partial purification and characterization of methionine adenosyltransferase from pea seedlings, Plant Sci. Lett. 10:381-390.

    Article  CAS  Google Scholar 

  • Abdel-Rahman, A. M., and Cline, M. G., 1989, Timing of growth inhibition following shoot inversion in Pharbitis nil, Plant Physiol. 91:464-465.

    Article  CAS  Google Scholar 

  • Abeles, F. B., 1972, Biosynthesis and mechanism of action of ethylene, Annu. Rev. Plant Physiol. 23:259-292.

    Article  CAS  Google Scholar 

  • Abeles, F. B., 1984, A comparative study of ethylene oxidation in Vicia faba and Mycobacterium paraffinicum, J. Plant Growth Regul. 3:85-95.

    Article  CAS  Google Scholar 

  • Abeles, F. B., Morgan, P. W., and Saltveit, M. E., Jr., 1992, Ethylene in Plant Biology, 2nd Ed., Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Abeles, F. B., Dunn, L. J., Morgens, P., Callahan, A., Dinterman, R. E., and Schmidt, J., 1988, Induction of 33- kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons, Plant Physiol. 87:609-615.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, F. B., Ruth, J. M., Forrence, L. E., and Leather, G. R., 1972, Mechanism of hormone action. Use of deuterated ethylene to measure isotopic exchange with plant material and the biological effects of deuterated ethylene, Plant Physiol. 49:669-671.

    Article  PubMed  CAS  Google Scholar 

  • Acaster, M. A., and Kende, H., 1983, Properties and partial purification of 1-aminocyclopropane-1-carboxylate synthase, Plant Physiol. 72:139-145.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D. O., and Yang, S. F., 1977, Methionine metabolism in apple tissue: Implication of S- adenosylmethionine as an intermediate in the conversion of methionine to ethylene, Plant Physiol. 60:892- 896.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D. O., and Yang, S. F., 1979, Ethylene biosynthesis: Identification of 1-aminocyclopropane-l- carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA 76:170-174.

    Article  PubMed  CAS  Google Scholar 

  • Aharoni, N., Anderson, J. D., and Lieberman, M., 1979, Production and action of ethylene in senescing leaf discs. Effect of indoleacetic acid, kinetin, silver ion, and carbon dioxide, Plant Physiol. 64:805-809.

    Article  PubMed  CAS  Google Scholar 

  • Amrhein, N., Forreiter, C, Klonka, C, Skorupka, H., and Tophof, S., 1987, Metabolism and its compartmentation of 1-aminocyclopropane-l-carboxylic acid in plant cells, in: Conjugated Plant Hormones. K. Schreiber, Schutte, H. R., and Sembdner, G., eds., Institute of Plant Biochemistry, Halle, East Germany, pp. 102.

    Google Scholar 

  • Amrhein, N., Schneebeck, D., Skorupka, H., Tophof, S., and Stockigt, J., 1981, Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-l-carboxylic acid in higher plants, Naturwissen. 68:619-620.

    Article  CAS  Google Scholar 

  • Apelbaum, A., and Burg, S. P., 1972, Effect of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum, Plant Physiol. 50:117-124.

    Article  PubMed  CAS  Google Scholar 

  • Apelbaum, A. V., inkler, C, Sfakiotakis, E., and Dilley, D. R., 1984, Increased mitochondrial DNA and RNA polymerase activity in ethylene-treated potato tubers, Plant Physiol. 76:461-464.

    Article  PubMed  CAS  Google Scholar 

  • Arteca, J. M., and Arteca, R. N., 1999, A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves, Plant Molec. Biol. 39:209-219.

    Article  CAS  Google Scholar 

  • Avni, A., Bailey, B. A., Mattoo, A. K., and Anderson, J. D., 1994, Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1- aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts, Plant Physiol. 106:1049-1055.

    Article  PubMed  CAS  Google Scholar 

  • Ayub, R. A., Rombaldi, C, Petitprez, M, Latche, A., Pech, J. C, and Lelievre, J. M., 1992, Biochemical and immunocytological characterization of ACC oxidase in transgenic grape cells, in: Cellular and Molecular Aspects of the Plant Hormone Ethylene, J. C. Pech, Latche, A., and Balague, C, eds., Kluwer Academic Publ., Dordrecht, Netherlands, pp. 98-99.

    Google Scholar 

  • Backlund, P. S. Jr., Chang, C. P., and Smith, R. A., 1982, Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5’-methylthioadenosine, J. Biol. Chem. 257:4196-4202.

    PubMed  CAS  Google Scholar 

  • Bakanashvili, M., Barkai-Golan, R., Kopeliovitch, E., and Apelbaum, A., 1987, Polyamine biosynthesis in Rhizopus-infected tomato fruits: Possible interaction with ethylene, Physiol. Molec. Plant Path. 31:41-50.

    Article  CAS  Google Scholar 

  • Barlow, J. N., Zhang, Z., John, P., Baldwin, J. E., and Schofield, C. J., 1997, Inactivation of 1- aminocyclopropane-1-carboxylate oxidase involves oxidative modifications, Biochem. 36:3563-3569.

    Article  CAS  Google Scholar 

  • Barry, C. S., Blume, B., Boyzayen, M., Cooper, W., Hamilton, A. J., and Grierson, D., 1996, Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato, Plant J. 9:525-535.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, C., and Coscia, C. J., 1973, In vitro synthesis of spermidine in the higher plant Vinca rosea, Biochem. Biophys. Res. Commun. 54:147-154.

    Article  PubMed  CAS  Google Scholar 

  • Bengochea, T., Acaster, M. A., Dodds, J. H., Evans, D. E., Jerie, P. H., and Hall, M. A., 1980, Studies on ethylene binding by cell free preparations from cotyledons of Phaseolus vulgaris L. II. Effects of structural analogues of ethylene and of inhibitors, Planta 148:407-409.

    Article  CAS  Google Scholar 

  • Benichou, M, Martinez-Reina, G., Romojaro, F., Pech, J. C., and Latche, A., 1995, Partial purification and properties of a 36-kDa 1-aminocyclopropane-1-carboxylate N-malonyltransferase from mung bean, Physiol. Plant. 94:629-634.

    Article  CAS  Google Scholar 

  • Beyer, E. Jr., 1972, Mechanism of ethylene action. Biological activity of deuterated ethylene and evidence against exchange and cis trans isomerization, Plant Physiol. 49:672-675

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., 1975, 14C2H4 : Its incorporation and metabolism by pea seedings under aseptic conditions, Plant Physiol. 56:273-278.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., 1976, Silver ion: A potent antiethylene agent in cucumber and tomato, HortSci. 11:195-196.

    CAS  Google Scholar 

  • Beyer, E. M. Jr., 1977, 14C2H4 : Its incorporation and oxidation to 14C02 by cut carnations, Plant Physiol. 60:203-206.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., 1979a, [14C]-Ethylene metabolism during leaf abscission in cotton, Plant Physiol. 64:971- 974.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., 1979b, Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism, Plant Physiol. 63:169-173.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., and Sundin, O., 1978, 14C2H4 metabolism in morning glory flowers, Plant Physiol. 61:896- 899.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr., Morgan, P. W., and Yang, S. F., 1984, Ethylene, in: Advanced Plant Physiology, M. B. Wilkins, ed.. Pitman Publ., London, pp. 111-126.

    Google Scholar 

  • Blankenship, S. M., and Sisler, E. C, 1989, Ethylene binding changes in apple and morning glory during ripening and senescence, J. Plant Growth Regul. 8:37-44.

    Article  CAS  Google Scholar 

  • Bleecker, E. M., Estelle, M. A., Somerville, C., and Kende, H., 1988, Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thalliana, Science 241:1086-1089.

    Article  PubMed  CAS  Google Scholar 

  • Bleecker, A. B., Henyon, W. H., Somerville, S. C., and Kende, H., 1986, Use of monoclonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis, Proc. Natl. Acad. Sci. 83:7755-7759.

    Article  PubMed  CAS  Google Scholar 

  • Bleecker, A. B., Esch, J. J., Hall, A. E., Rodriguez, F. I., and Binder, B. M., 1998, The ethylene-receptor family from Arabidopsis: Structure and function, Philos. Trans. Royal Soc. London B353:1405-1412.

    Google Scholar 

  • Boiler, T., Herner, R. C., and Kende, H., 1979, Assay for and enzymatic formation of an ethylene precursor, 1- aminocyclopropane-1-carboxylic acid, Planta 145:293-303.

    Article  Google Scholar 

  • Boiler, T., Gehri, A., Mauch, F., and Voegeli, U., 1983, Chitinase in bean leaves: Induction by ethylene, purification, properties, and possible function, Planta 157:22-31.

    Article  Google Scholar 

  • Bouzayen, M., Latche, A., Allibert, G., and Pech, J.-C., 1988, Intracellular sites of synthesis and storage of 1- (malonylamino)cyclopropane-l-carboxylic acid in Acer pseudoplatanus cells, Plant Physiol. 88:613-617.

    Article  PubMed  CAS  Google Scholar 

  • Bouzayen, M., Latche, A., Pech, J.-C., and Marigo, G., 1989, Carrier-mediated uptake of I- (Malonylamino)cyclopropane-l-carboxylic acid in vacuoles isolated from Catharanthus roseus cells, Plant Physiol. 91:1317-1322.

    Article  PubMed  CAS  Google Scholar 

  • Bouzayen, M., Latche, A., and Pech, J.-C, 1990, Subcellular localization of the sites of conversion of 1- aminocyclopropane-1-carboxylic acid into ethylene in plant cells, Planta 180:175-180.

    Article  CAS  Google Scholar 

  • Broekaert, W., Lee, H. I., Kush, A., Chua, N. H., and Raikhel, N., 1990, Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brassilensis), Proc. Natl Acad. Sci. USA 87:7633-7637.

    Article  PubMed  CAS  Google Scholar 

  • Broglie, K. E., Biddle, P., Cressman, R., and Broglie, R., 1989, Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco, The Plant Cell 1:599- 607.

    PubMed  CAS  Google Scholar 

  • Brunhuber, N. M. W., Mort, J. L., Christoffersen, R. E., and Reich, N. O., 2000, Steady-state mechanism of recombinant avocado ACC oxidase: Initial velocity and inhibitor studies, Biochem. 39:10730-10738.

    Article  CAS  Google Scholar 

  • Buescher, R. W., Sistrunk, W. A., and Brady, P. L., 1975, Effects of ethylene on metabolic and quality attributes in sweet potato roots, J. Food Sci. 40:1018-1020.

    Article  CAS  Google Scholar 

  • Bufler, G., 1986, Ethylene-promoted conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene in peel of apple at various stages of fruit development, Plant Physiol. 80:539-543.

    Article  PubMed  CAS  Google Scholar 

  • Buhler, B., Drumm, H., and Mohr, H., 1978, Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. II. Enzyme levels and chlorophyll synthesis, Planta 142:119-122.

    Article  Google Scholar 

  • Burg, S. P., 1973, Ethylene in plant growth, Proc. Natl. Acad. Sci. USA 70:591-597.

    Article  PubMed  CAS  Google Scholar 

  • Burg, S. P., and Burg, E. A., 1967, Molecular requirements for the biological activity of ethylene, Plant Physiol. 42:144-152.

    Article  PubMed  CAS  Google Scholar 

  • Burg, S. P., and Clagett, C. O., 1967, Conversion of methionine to ethylene in vegetative tissue and fruits, Biochem. Biophys. Res. Comm. 27:125-130.

    Article  PubMed  CAS  Google Scholar 

  • Burns, J. K., and Evensen, K. B., 1986, Ca2+ effects on ethylene, carbon dioxide and 1-aminocyclopropane-l- carboxylic acid synthase activity, Physiol. Plant. 66:609-615.

    Article  CAS  Google Scholar 

  • Callahan, A. M., Morgens, P. H., Wright, P., and Nichols, K. E. Jr., 1992, Comparison of Pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars, Plant Physiol. 100:482-488.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, A. C., and Reid, M. S., 1981, The use of silver thiosulfate anionic complex as a foliar spray to prevent flower abscission of Zygocactus, HortSci. 16:761-762.

    CAS  Google Scholar 

  • Capitani, G.,Hohenster, E., Feng, L., Storici, P., Kirsch, J. F., and Jansonius, J. N., 1999, Structure of 1- aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene, J. Molec. Biol 294:745-756.

    Article  PubMed  CAS  Google Scholar 

  • Castellano, J. M., and Vioque, B., 2000, Biochemical features and inhibitors of the 1-aminocyclopropane-l- carboxylic acid oxidase isolated from pear fruit, Eur. Food Res. Technol. 210:397-401.

    Article  CAS  Google Scholar 

  • Chadwick, A. V., and Burg, S. P., 1967, An explanation of the inhibition of root growth caused by indole-3- acetic acid, Plant Physiol 42:415-420.

    Article  PubMed  CAS  Google Scholar 

  • Chalutz, E., 1973, Ethylene-induced phenylalanine ammonia-lyase activity in carrot roots, Plant Physiol. 51:1033-1036.

    Article  PubMed  CAS  Google Scholar 

  • Chalutz, E., Mattoo, A. K., Solomos, T., and Anderson, J. D., 1984, Enhancement by ethylene of cellulysin- induced ethylene production by tobacco leaf discs, Plant Physiol. 74:99-103.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. 1996. The ethylene signal transduction pathway in Arabidopsis: An emerging paradigm? Trends Biochem. Sci. 21:129-133.

    PubMed  CAS  Google Scholar 

  • Chang, C., and Stewart, R C., 1998, The two-component system, Plant Physiol 117:723-731.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., Kwok, S. F., Bleecker, A. B., and Meyerowitz, E. M., 1993, Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators, Science 262:539-544.

    Article  PubMed  CAS  Google Scholar 

  • Chernys, J., and Kende, H., 1996, Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia, Planta 200:113-118.

    Article  CAS  Google Scholar 

  • Christoffersen, R.E., and Laties, G. G., 1982, Ethylene regulation of gene expression in carrots. Proc. Natl Acad. Sci. USA 79:4060-4063.

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen, R. E., McGarvey, D. J., and Savarese, P., 1992, Biochemical and molecular characterization of ethylene forming enzyme from avocado, in: Cellular and Molecular Aspects of the Plant Hormone Ethylene. J. C. Pech, A. Latche, and C. Balague, eds., Kluwer Academic Publ., Dordrecht, Netherlands,pp. 65-70.

    Google Scholar 

  • Cohen, E., and Kende, H., 1986, The effect of submergence, ethylene and gibberellin on polyamines and their biosynthetic enzymes in deepwater-rice internodes, Planta 169:498-504.

    Article  CAS  Google Scholar 

  • Cookson, C and Osborne, D. J., 1978, The stimulation of cell extension by ethylene and auxin in aquatic plants, Planta 144:39-47.

    Article  CAS  Google Scholar 

  • Dela Fuente, R. K., and Leopold, A. C., 1969, Kinetics of abscission in the bean petiole explant, Plant Physiol 44:251-254.

    Article  Google Scholar 

  • Dominguez, M., and Vendrell, M., 1993, Wound ethylene biosynthesis in preclimacteric banana slices, Acta Hort. 343:270-274.

    Google Scholar 

  • Dong, J. G., Fernandez-Maculet, J. C., and Yang, S. F., 1992, Purification and characterization of 1- aminocyclopropane-1-carboxylate oxidase from apple fruit, Proc. Natl Acad. Sci. USA 89:9789-9793.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J. G., Yip, W. K., and Yang, S. F., 1991, Monoclonal antibodies against apple 1-aminocyclopropane-l- carboxylate synthase, Plant Cell Physiol. 32:25-31.

    CAS  Google Scholar 

  • Drory, A., Mayak, S., and Woodson, W. R., 1993, Expression of ethylene biosynthetic pathway mRNAs is spatially regulated within carnation flower petals, J. Plant Physiol. 141:663-667.

    Article  CAS  Google Scholar 

  • Dupille, E., and Zacarias, L., 1996, Extraction and biochemical characterization of wound-induced ACC oxidase from citrus peel, Plant Sci. 114:53-60.

    Article  CAS  Google Scholar 

  • Dupille, E., Rombaldi, C., Lelievre, J.-M., Cleyet-Marel, J.-C, Pech, J.-C and Latche, A., 1993, Purification, properties and partial amino-acid sequence of 1-aminocyclopropane-l-carboxylic acid oxidase from apple fruits, Planta 190:65-70.

    Article  PubMed  CAS  Google Scholar 

  • Eaks, I. L., 1966, The effect of ethylene upon ripening and respiratory rate of avocado fruit, Calif. Avocado Soc. Yearbook 50:128-133.

    Google Scholar 

  • Ecker, J. R., 1995, The ethylene signal transduction pathway in plants, Science 268:667-675.

    Article  PubMed  CAS  Google Scholar 

  • Ecker, J. R., and Davis, R. W., 1987, Plant defense genes are regulated by ethylene, Proc. Natl. Acad. Sci. USA 84:5202-5206.

    Article  PubMed  CAS  Google Scholar 

  • Eisinger, W., 1983, Regulation of pea internode expansion by ethylene, Annu. Rev. Plant Physiol. 34:225-240.

    Article  CAS  Google Scholar 

  • Eisinger, W., Croner, L. J., and Taiz, L., 1983, Ethylene-induced lateral expansion in etiolated pea stems, Plant Physiol. 73:407-412.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D. E., Dodds, J. H., Lloyd, P. C, apGwynn, I, and Hall, M. A., 1982, A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris L.by high resolution autoradiography, Planta 154:48-52.

    Article  CAS  Google Scholar 

  • Evans, D. E., Smith, A. R., Taylor, J. E., and Hall, M. A., 1984, Ethylene metabolism in Pisum sativum L. Kinetic parameters, the effects of propylene, silver and carbon dioxide and comparison with other systems, Plant Growth Regul. 2:187-195.

    Article  CAS  Google Scholar 

  • Feig, A. L., and Lippard, S. J., 1994, Reactiions of non-heme iron(II) centers with dioxygen in biology and chemistry, Chem. Rev. 94:759-805.

    Article  CAS  Google Scholar 

  • Felix, G., and Meins, F. Jr., 1987, Ethylene regulation of β-1,3-glucanase in tobacco, Planta 172-386-392.

    Article  CAS  Google Scholar 

  • Feng, L., and Kirsch, J. F., 2000, L-Vinylglycine is an alternative substrate as well as mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase, Biochem. 39:2436-2444.

    Article  CAS  Google Scholar 

  • Fernandez-Maculet, J. C., and Yang, S. F., 1992, Extraction and partial characterization of the ethylene-forming enzyme from apple fruit, Plant Physiol. 99:751-754.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Maculet, J. C., Dong, J. G., and Yang, S. F., 1993, Activation of 1-aminocyclopropane-1-carboxylate oxidase by carbon dioxide, Biochem. Biophys. Res. Comm. 193:1168-1173.

    Article  PubMed  CAS  Google Scholar 

  • Ferro, A. J., Barrett, A., and Shapiro, S. K., 1976, Kinetic properties and the effect of substrate analogues on 5’-methylthioadenosine nucleosidase from Escherichia coli, Biochim. Biophys. Acta 438:487-494.

    Article  PubMed  CAS  Google Scholar 

  • Finlayson, S. A., Reid, D. M., and Morgan, P. W., 1997, Root and leaf specific ACC oxidase activity in corn and sunflower seedlings, Phytochem 45:869-877.

    Article  CAS  Google Scholar 

  • Fluhr, R., 1998, Ethylene perception: From two-component signal transducers to gene induction, Trends Plant Sci. 3:14-146.

    Article  Google Scholar 

  • Fluhr, R. and Mattoo, A. K., 1996, Ethylene-biosynthesis and perception, Crit. Rev. Plant Sci. 15:479-523. Garcia-Pineda, E., and Lozoya-Gloria, E., 1999, Induced gene expression of 1-aminocyclopropane-l-carboxylicacid (ACC oxidase) in pepper (Capsicum annuum L.) by arachidonic acid, Plant Sci. 145:11-21.

    Google Scholar 

  • Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D. M., and Thorpe, T. A., 1996, Plant hormones and plant growth regulators in plant tissue culture, In Vitro Cell. Dev. Biol. Plant 32:272-289.

    Article  CAS  Google Scholar 

  • Gidrol, X., Chrestin, H., Mounoury, G., and D’Auzac, J., 1988, Early activation by ethylene of the tonoplast H+- pumping ATPase in the latex from Hevea brasiliensis, Plant Physiol. 86:899-903.

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1980, Sulfur amino acids in plants, in: Amino Acids and Derivatives. The Biochemistry of Plants: A Comprehensive Treatise, Vol. 5, B. J. Miflin (ed.). Academic Press, New York, pp. 453-505.

    Google Scholar 

  • Giovanelli, J., Datko, A. H., Mudd, S. H., and Thompson, G. A., 1983, In vivo metabolism of 5’- methylthioadenosine in Lemna, Plant Physiol. 71:319-326.

    Article  PubMed  CAS  Google Scholar 

  • Goeschl, J. D., and Kays, S. J., 1975, Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean and cotton seedlings, Plant Physiol. 55:670-677.

    Article  PubMed  CAS  Google Scholar 

  • Goren, R. and Sisler, E. C., 1986, Ethylene-binding characteristics in Phaseolus, citrus, and Ligustrum plants, Plant Growth Regul. 4:43-54.

    Article  CAS  Google Scholar 

  • Goudey, J. S., F. L. Tittle, and M. S. Spencer. 1989. A role for ethylene in the metabolism of cyanide by higher plants. Plant Physiol. 89:1306-1310.

    Article  PubMed  CAS  Google Scholar 

  • Gross, K. C, Watada, A. E., Kang, M. S., Kim, S. D., Kim, K. S., and Lee, S. W., 1986, Biochemical changes associated with the ripening of hot pepper fruit, Physiol. Plant 66:31-36.

    Article  CAS  Google Scholar 

  • Guo, L., Arteca, R. N., Phillips, A. T., and Liu, Y., 1992, Purification and characterization of 1- aminocyclopropane carboxylate N-malonyltransferase from etiolated mung bean hypocotyls, Plant Physiol. 100:2041-2045.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, K., and Anderson, J. D., 1989, Influence of temperature on potentiation of cellulysin-induced ethylene biosynthesis by ethylene, Plant Cell Physiol. 30:345-349.

    CAS  Google Scholar 

  • Guranowski, A., 1983, Plant 5-methylthioribose kinase: Properties of the partially purified enzyme from yellow lupin (Lupinus luteus L.) seeds, Plant Physiol. 71:932-935.

    Article  PubMed  CAS  Google Scholar 

  • Guranowski, A. B., Chiang, P. K., and Cantoni, G. L., 1981, 5’-Methylthioadenosine nucleosidase: Purification and characterization of the enzyme from Lupinus luteus seeds, Eur. J. Biochem. 114:293-299.

    Article  PubMed  CAS  Google Scholar 

  • Guzman, P., and Ecker, J. R., 1990, Exploiting the triple response of Arabidopsis to identify ethylene-related mutants, Plant Cell 2:513-523.

    PubMed  CAS  Google Scholar 

  • Hall, M. A. , 1991, Ethylene metabolism, in: The Plant Hormone Ethylene. A. H. Mattoo and Suttle, J. C, eds., CRC Press, Inc., Boca Raton, FL, pp. 65-80.

    Google Scholar 

  • Hall, M. A., 1986, Ethylene receptors, in: Hormones, Receptors and Cellular Interactions in Plants, C. M. Chadwick and J. R. Garrod, eds., Cambridge Univ. Press, Cambridge, pp. 69-89.

    Google Scholar 

  • Hall, M. A., Kapuya, J. A., Sivakumaran, S., and John, A., 1977, The role of ethylene in the response of plants to stress, Pestic. Sci.8:217-223.

    Article  CAS  Google Scholar 

  • Hall, M. A., Howarth, C. J., Robertson, D., Sanders, I. O., Smith, A. R., Smith, P. G., Starling, J. J., Tang, Z- D., Thomas, C. J. R., and Williams, R. A. N., 1987, Ethylene binding proteins, in: Molecular Biology of Plant Growth Control, J. E. Fox and M. Jacobs, eds., Alan R. Liss, New York, pp. 335-344.

    Google Scholar 

  • Hamilton, A. J., Bouzayen, M., and Grierson, D., 1991, Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast, Proc. Natl. Acad. Sci. USA 88:7434-7437.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A. J., Lycett, G. W., and Grierson, D., 1990, Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants, Nature 346:284-287.

    Article  CAS  Google Scholar 

  • Hanley, K. M., Meir, S., and Bramlage, W. J., 1989, Activity of ageing carnation flower parts and the effects of l-(malonylamino)cyclopropane-l-carboxylic acid-induced ethylene, Plant Physiol. 91:1126-1130.

    Article  PubMed  CAS  Google Scholar 

  • Harpham, N. V. J., Berry, A. W., Holland, M. G., Moshkov, I. E., Smith, A. R., and Hall, M. A., 1996, Ethylene binding sites in higher plants, Plant Growth Regul 18:71-77.

    Article  CAS  Google Scholar 

  • Henry, E. W., and Ananich, M. E., 1985, Ethylene effects on superoxide dismutase in bean abscission zone tissue, Proc. 12th Ann. Meeting Plant Growth Regul. Soc. Am. Univ. Colorado, Boulder, July 28-Aug. 1, pp. 60-77.

    Google Scholar 

  • Henskens, J. A. M., Rouwendal, G. J. A., Ten Have, A., and Woltering, E. J., 1994, Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes, Plant Mol. Biol. 26:453-458.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, N. E., Fu, J.-R., and Yang, S. F., 1983, Identification and metabolism of 1- (malonylamino)cyclopropane-l-carboxylic acid in germinating peanut seeds, Plant Physiol. 71:197-199.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, N. E., Yang, S. F., and McKeon, T., 1982, Identification of l-(malonylamino)cyclopropane-l- carboxylic acid as a major con jugate of 1-aminocyclopropane-l-carboxylic acid, and ethylene precursor inhigher plants, Biochem. Biophys. Res. Commun. 104:765-770.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., and Meyerowitz, E. M., 1998, Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana, Cell 94:261 -271.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., Sakai, H., Nourizadeh, S., Chen, Q. G., Bleecker, A. B., Ecker, J. R., and Meyerowitz, E. M., 1998, EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis, Plant Cell. 10:1321-1332.

    PubMed  CAS  Google Scholar 

  • Hubbard, N. L., Huber, S. C., and Pharr, D. M., 1989, Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits, Plant Physiol 91:1527-1534.

    Article  PubMed  CAS  Google Scholar 

  • Huberman, M., and Goren, R., 1982, Is uronic acid oxidase involved in the hormonal regulation of abscission in explants of citrus leaves and fruits? Physiol. Plant 56:168-176.

    Article  CAS  Google Scholar 

  • Hyodo, H., 1991, Stress/wound ethylene, in: The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle, eds., CRC Press, Inc., Boca Raton, FL, pp. 43-63.

    Google Scholar 

  • Hyodo, H., and Yang, S. F., 1971, Ethylene-enhanced formation of cinnamic acid-4-hydroxylase in excised pea epicotyl tissue, Arch Biochem. Biophys. 143:338-339.

    Article  PubMed  CAS  Google Scholar 

  • Hyodo, H., Tanaka, K., and Yoshisaka, J., 1985, Induction of 1-aminocyclopropane-l-carboxylic acid synthase in wounded mesocarp tissue of winter squash fruit and the effects of ethylene, Plant Cell Physiol. 26:161- 167.

    CAS  Google Scholar 

  • Hyodo, H., Hashimoto, C., Morozumi, S., Hu, W., and Tanaka, K., 1993, Characterization and induction of the activity of 1-aminocyclopropane-1-carboxylate oxidase in the wounded mesocarp tissue of Cucurbita maxima, Plant Cell Physiol. 34:667-671.

    CAS  Google Scholar 

  • Icekson, I., Goldlust, A., and Apelbaum, A., 1985, Influence of ethylene on S-adenosylmethionine decarboxylase activity in etiolated pea seedlings, J. Plant Physiol. 119:335-345.

    Article  CAS  Google Scholar 

  • Iki, K., Sekiguchi, K., Kurata, K., Tada, T., Nakagawa, H., Ogura, N., and Takehana, H., 1978, Immunological properties of β-fructofuranosidase from ripening tomato fruit, Phytochemistry 17:311-312.

    Article  CAS  Google Scholar 

  • Inaba, A., and Nakamura, R., 1986, Effect of exogenous ethylene concentration and fruit temperature on the minimum treatment time necessary to induce ripening in banana fruit, J. Japan Soc. Hort. Sci. 55:348- 354.

    Article  Google Scholar 

  • Isola, M. C. and Franzoni, L., 1989, Effect of ethylene on the increase in ribonuclease activity in potato tuber tissue, Plant Physiol. Biochem. 27:245-250.

    CAS  Google Scholar 

  • Itai, A., Kawata, T., Tanabe, K., Tamura, F., Uchiyama, M., Tomomitsu, M, and Shiraiwa, N., 1999, Identification of 1-aminocyclopropane-l-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifoliaNakai), Mol. Gen. Genet. 261:42-49.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B., 1983, Regulation of root growth and morphology by ethylene and other externally applied growth substances, in: Growth Regulators in Root Development, M. B. Jackson and A. D. Stead, eds., Proc. Brit. Plant Growth Regulator Group, Monograph 10:103-116.

    Google Scholar 

  • Jeffrey, D., Smith, C, Goodenough, P., Prosser, I., and Grierson, D., 1984, Ethylene-independent and ethylene- dependent biochemical changes in ripening tomatoes, Plant Physiol. 74:32-38.

    Article  Google Scholar 

  • Jerie, P. H., and Hall, M. A., 1978, The identification of ethylene oxide as a major metabolite of ethylene in Viciafaba L., Proc. R. Soc. London Ser. B 200:87-94.

    Article  CAS  Google Scholar 

  • Jiao, X.-Z., Yip, W. K., and Yang, S. F., 1987. The effect of light and phytochrome on 1-aminocyclopropane- 1-carboxylic acid metabolism in etiolated wheat seedling leaves. Plant Physiol.85:643-647.

    Article  PubMed  CAS  Google Scholar 

  • Jiao, X.-Z., Philosoph-Hadas, S., Su, L.-Y., and Yang, S. F., 1986, The conversion of 1- (malonylamino)cyclopropane-l-carboxylic acid to 1-aminocyclopropane-l-carboxylic acid in plant tissues, Plant Physiol. 81:637-641.

    Article  PubMed  CAS  Google Scholar 

  • John, P., 1997, Ethylene biosynthesis: The role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, and its possible evolutionary origin, Physiol. Plant. 100:583-592.

    Article  CAS  Google Scholar 

  • Kasai, Y., Hyodo, H., Ikoma, Y., and Yano, M., 1998, Characterization of 1-aminocyclopropane-1-carboxylate (ACC) oxidase in broccoli florets and from Escherichia coli cells transformed with cDNA of broccoli ACC oxidase, Bot. Bull. Acad. Sin. 39:225-230.

    CAS  Google Scholar 

  • Kasai, Y., Kato, M., and Hyodo, H., 1996, Ethylene biosynthesis and its involvement in senescence of broccoli florets, J. Japan. Soc. Hort. Sci. 65:185-191.

    Article  CAS  Google Scholar 

  • Kato, M., and Hyodo, H., 1999, Purification and characterization of ACC oxidase and increase in its activity during ripening of pear fruit, J. Japan. Soc. Hort. Sci. 68:551-557.

    Article  CAS  Google Scholar 

  • Kawase, M., 1979, Role of cellulase in aerenchyma development in sunflower,Amer. J. Bot. 66:183-190.

    Article  CAS  Google Scholar 

  • Kende, H., 1993, Ethylene biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol 44:283-307.

    Article  CAS  Google Scholar 

  • Kende, H., 1989, Enzymes of ethylene biosynthesis, Plant Physiol. 91:1-4.

    Article  PubMed  CAS  Google Scholar 

  • Kieber, J. J., Rothenberg, M., Roman, G., Feldman, K. A., and Ecker, J. R., 1993, CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases, Cell 72:427-441.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. H., Lee, J. H., Joo, S., and Kim, W. T., 1999, Ethylene regulation of an ERS1 homolog in mung bean seedlings, Physiol. Plant. 106-90-97.

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, W. T., Kang, B. G., and Yang, S. F., 1997, Induction of 1-aminocyclopropane-l-carboxylic oxidase mRNA by ethylene in mung bean hypocotyls: Involvement of both protein phosphorylation anddephosphorylation in ethylene signaling, Plant J. 11:399-405.

    Article  CAS  Google Scholar 

  • Kim, W.T. and Yang, S. F., 1992, Turnover of 1-aminocyclopropane-l-carboxylic acid synthase in wounded tomato tissues, Plant Physiol. 100:1126-1130.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W. T., and Yang, S. F., 1994, Structure and expression of cDNAs encoding 1-aminocyclopropane-l- carboxylate oxidase homologs isolated from excised mung bean hypocotyls., Planta 194:223-229.

    Article  PubMed  CAS  Google Scholar 

  • Konze, J. R., and Kende, H., 1979a, Ethylene formation from 1-aminocyclopropane-l-carboxylic acid in homogenates of etiolated pea seedlings, Planta 146:293-301.

    Article  CAS  Google Scholar 

  • Konze, J. R., and Kende, H., 1979b, Interactions of methionine and selenomethionine with methionine adenosyltransferase and ethylene-generating systems, Plant Physiol. 63:507-510.

    Article  PubMed  CAS  Google Scholar 

  • Kuai, J., and Dilley, D. R., 1992, Extraction, partial purification and characterization of 1 -aminocyclopropane- 1-carboxylic acid oxidase from apple fruit, Postharvest Biol. Technol. 1:203-211.

    Article  CAS  Google Scholar 

  • Kushad, M. M., 1990, Recycling of 5’deoxy-5’-methylthioadenosine in plants, in: Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, H. E. Flores, R. N. Arteca, and J. C. Shannon, eds., American Soc. Plant Physiologists, MD, pp. 50-61.

    Google Scholar 

  • Kushad, M. M., Richardson, D. G., and Ferro, A. J., 1983, Intermediates in the recycling of 5-methylthioribose to methionine in fruits, Plant Physiol. 73:257-261.

    Article  PubMed  CAS  Google Scholar 

  • Lanahan, M. B., Yen, H.-C., Glovannoni, J. J., and Klee, H. J., 1994, The Never Ripe mutation blocks perception in tomato.Plant Cell 6:521-530.

    PubMed  CAS  Google Scholar 

  • Larsen, P. B., and Woodson, W. R., 1991, Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation.Plant Physiol.96:997-999.

    Article  PubMed  CAS  Google Scholar 

  • Lashbrook, C. C, Tiemann, D. M., and Klee, H. J., 1998, Differential regulation of the tomato ETR family throughout plant development,The Plant J.15:243-252.

    Article  CAS  Google Scholar 

  • Lasserre, E., Bouquin, T., Hernandez, J. A., Bull, J., Pech, J. C, and Balague, C, 1996, Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.), Mol. Gen. Genet.251:81-90.

    PubMed  CAS  Google Scholar 

  • Latche, A., Dupille, E., Rombaldi, C, Cleyet-Marel, J. C, Lelievre, J. M., and Pech, J. C, 1992, Purification, characterization and subcellular localization of ACC oxidase from fruits, in:Cellular and Molecular Aspects of the Plant Hormone Ethylene, J. C. Pech, A. Latche, and C. Balague, eds., Kluwer Academic Publ., Dordrecht, Netherlands, pp. 39-45.

    Google Scholar 

  • Lawton, K. A., Raghothama, K. G., Goldsbrough, P. G., and Woodson, W. R., 1990, Regulation of senescence related gene expression in carnation flower petals by ethylene,Plant Physiol.93:1370-1375.

    Article  PubMed  CAS  Google Scholar 

  • Lay, V. J., Prescott, A. G., Thomas, P. G., and John, P., 1996, Heterologous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit,Eur. J. Biochem.242:228-234.

    Article  PubMed  CAS  Google Scholar 

  • Lay-Yee, M., and Knighton, M. L., 1995, A full-length cDNA encoding 1-aminocyclopropane-1-carboxylate synthase from apple,Plant Physiol.107:1017-1018.

    Article  PubMed  CAS  Google Scholar 

  • Leather, G. R., Forrence, L. E., and Abeles, F. B., 1972, Increased ethylene production during clinostat experiments may cause leaf epinasty,Plant Physiol.49:183-186.

    Article  PubMed  CAS  Google Scholar 

  • Lelievre, J.-M., Tichit, L., Dao, P., Fillion, L., Nam, Y.-W., Pech, J.-C, and Latche, A., 1997, Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L. ) fruits,Plant Mol. Biol.33:847-855.

    Article  CAS  Google Scholar 

  • Leyser, H. M. O., 1998, plant hormones,Curr. Biol.8:R5-R7.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Wiesman, Z., Liu, D., and Mattoo, A. K., 1992, A functional tomato ACC synthase expressed in Escherichia coli demonstrates suicidal inactivation by its substrate S-adenosylmethionine,FEBS Lett.306:103-107.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Feng, L., and Kirsch, J. F., 1997, Kinetic and spectroscopic investigations of wild-type and mutant forms of apple 1-aminocyclopropane-1-carboxylate synthase, Biochem.36:15477-15488.

    Article  CAS  Google Scholar 

  • Lieberman, M., 1979, Biosynthesis and action of ethylene, Annu. Rev. Plant Physiol.30:533-591.

    Article  CAS  Google Scholar 

  • Lieberman, M., and Mapson, L. W., 1964, Genesis and biogenesis of ethylene, Nature 204:343-345.

    Article  CAS  Google Scholar 

  • Lieberman, M., Kunishi, A. T., Mapson, L. W., and Wardale, D. A., 1966, Stimulation of ethylene production in apple tissue slices by methionine, Plant Physiol.41:376-382.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, J. E., and Fischer, R. L., 1988, Regulation of gene expression by ethylene in wild-type andrin tomato (Lycopersicon esculentum) fruit, Plant Physiol.88:370-374.

    CAS  Google Scholar 

  • Lincoln, J. E., Cordes, S., Read, E., and Fischer, R. L., 1987, Regulation of gene expression by ethylene duringLycopersicon esculentum (tomato) fruit development,Proc. Natl. Acad. Sci.84:2793-2797.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, J. E, Campbell, A. D., Oetiker, J., Rottmann, W. H., Oeller, P. W., Shen, N. F., and Thologis, A., 1993, LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato(Lycopersicon esculentum), J. Biol. Chem.268:19422-19430.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Hoffman, N. E., and Yang, S. F., 1985a, Ethylene-promoted malonylation of 1-aminocyclopropane-1- carboxylic acid particpates in autoinhibition of ethylene synthesis in grapefruit flavedo discs,Planta 164:565-568.

    Article  CAS  Google Scholar 

  • Liu, Y., Su, L.-Y., and Yang, S. F., 1985b, Ethylene promotes the capability to malonylate 1- aminocyclopropane-1-carboxylic acid and D-amino acids in preclimacteric tomato fruits,Plant Physiol.77:891-895.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Hoffman, N. E., and Yang, S. F. Yang, 1985c, Promotion by ethylene of the capability to convert 1- aminocycloprpane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits,Plant Physiol.77:407-411.

    Article  PubMed  CAS  Google Scholar 

  • Lurssen, K ., Naumann, K., and Schroder, R., 1979, 1-Aminocyclopropane-l-carboxylic acid-an intermediate of the ethylene biosynthesis in higher plants,Z. Pflanzenphysiol.92:285-294.

    Google Scholar 

  • Mansour, R., Latche, A. V., aliant, V., Pech, J. C, and Reid, M. S., 1986, Metabolism of 1-aminocyclopropane- 1-carboxylic acid in ripening apple fruits,Physiol. Plant.66:495-502.

    Article  CAS  Google Scholar 

  • Mapson, L. W., 1969, Biogenesis of ethylene,Biol. Rev.44:155-187.

    Article  PubMed  CAS  Google Scholar 

  • Martin, M. N., and Saftner, R. A., 1995, Purification and characterization of 1-aminocyclopropane carboxylic acid N-malonyltransferase from tomato fruit,Plant Physiol.108:1241-1249.

    PubMed  CAS  Google Scholar 

  • Martin, M. N., Cohan, J. D., and Saftner, R. A., 1995, A new 1-aminocyclopropane carboxylic acid-conjugating activity in tomato fruit,Plant Physiol.109:917-926.

    Article  PubMed  CAS  Google Scholar 

  • Mathooko, F. M, Kubo, Y., Inaba, A., and Nakamura, R., 1993, Partial characterization of 1- aminocyclopropane-1-carboxylate oxidase from excised mesocarp tissue of winter squash fruit,Sci. Rep. Fac. Agric. Okayama Univ. 82:49-59.

    CAS  Google Scholar 

  • Mattoo, A. K., and Suttle, J. C, eds., 1991,The Plant Hormone Ethylene, CRC Press, Boca Raton, FL. p. 337.

    Google Scholar 

  • Mattoo, A. K., and White, W. B., 1991, Regulation of ethylene biosynthesis, in:The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle, eds., CRC Press, Boca Raton, FL, pp. 21-42.

    Google Scholar 

  • McGarvey, D. J., and Christoffersen, R. E., 1992, Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit, J. Biol. Chem. 267:5964-5967.

    PubMed  CAS  Google Scholar 

  • McGarvey, D. J., Yu, H., and Christoffersen, R. E., 1990, Nucleotide sequence of a ripening-related cDNA from avocado fruit,Plant Mol Biol.15:165-167.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, R. B., and Ecker, J. R., 1998, Ethylene signaling inArabidopsis: Events from the membrane to the nucleus,Plant Physiol. Biochem.36:103-113.

    Article  CAS  Google Scholar 

  • McKeon, T. A., Fernandez-Maculet, J. C, and Yang, S.-F., 1995, Biosynthesis and metabolism of ethylene, in:Plant Hormones Physiology, Biochemistry and Molecular Biology, P. J. Davies, ed., Kluwer Academic Publ., Dordrecht, The Netherlands, pp. 118-139.

    Google Scholar 

  • McMurchie, E. J., McGlasson, W. B., and Eaks, I. L., 1972, Treatment of fruits with propylene gives information about the biogenesis of ethylene,Nature 237:235-236.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, P. K., and Christen, P., 1994, Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7- oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1- semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases,Biochem. Biophys. Res. Commun. 198:138-143.

    Article  PubMed  CAS  Google Scholar 

  • Ming, L.-J., Que, L. Jr., Kriauciunas, A., Frolik, C. A., and Chen, V. J., 1990, Coordination chemistry of the metal binding site of isopenicillin N synthase,Inorg. Chem.29:1111-1112.

    Article  CAS  Google Scholar 

  • Mita, S., Kirita, C, Kato, M., and Hyodo, H., 1999, Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume),Physiol. Plant.107:319-328.

    Article  CAS  Google Scholar 

  • Miyazaki, J. H., and Yang, S. F., 1987, Metabolism of 5-methylthioribose to methionine,Plant Physiol.84:277-281.

    Article  PubMed  CAS  Google Scholar 

  • Moya-Leon, M. A., and John. P., 1995, Purification and biochemical characterization of 1- aminocyclopropane1-carboxylate oxidase from banana fruit,Phytochem.39:15-20.

    Article  CAS  Google Scholar 

  • Muller, R., Lind-Iversen, S., Stummann, B. M., and Serek, M., 2000, Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses.J. Hort. Sci. Biotechnol.75:12-18.

    CAS  Google Scholar 

  • Murr, D. P. and Yang, S. F., 1975, Inhibition of in vivo conversion of methionine to ethylene by L-canaline and 2,4-dinitrophenol,Plant Physiol.55:79-82.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau, J. A., Zhang, X. S., Nair, H., and O’Neill, S. D., 1993, Temporal and spatial regulation of 1- aminocyclopropane1-carboxylate oxidase in the pollination-induced senescence of orchid flowers,Plant Physiol.103:31-39.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, N., Nakagawa, N., and Imaseki, H., 1988, Molecular size of wound-induced 1-aminocyclopropane-l- carboxylate synthase from Cucurbita maxima Duch. and change of translatable mRNA of the enzyme after wounding,Plant Cell Physiol.29:989-998.

    CAS  Google Scholar 

  • Nakajima, N., Mori, H., Yamazaki, K., and Imaseki, H., 1990, Molecular cloning and sequence of a complementary DNA encoding 1 -aminocyclopropane-1 -carboxylate synthase induced by tissue wounding,Plant Cell Physiol.31:1021-1029.

    CAS  Google Scholar 

  • Nakatsuka, A., Shiomi, S., Kubo, Y., and Inaba, A., 1997, Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit,Plant Cell Physiol.38:1103-1110.

    Article  PubMed  CAS  Google Scholar 

  • Nee, M., Chiu, L., and Eisinger, W., 1978, Induction of swelling in pea internode tissue by ethylene,Plant Physiol.62:902-906.

    Article  PubMed  CAS  Google Scholar 

  • Nijenhuis-DeVries, M. A., Woltering, E. J., and DeVrije, T., 1994, Partial characterization of carnation petal 1- aminocyclopropane-1-carboxylate oxidase,J. Plant Physiol.144:549-554.

    Article  CAS  Google Scholar 

  • Olson, D. C, White, J. A., Edelman, L., Harkins, R. H., and Kende, H., 1991, Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits,Proc. Natl. Acad. Sci. USA 88:5340-5344.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, D. J., 1982, The ethylene regulation of cell growth in specific target tissues of plants, in:Plant Growth Substances, P. F. Waring, ed., Academic Press, London, p. 279.

    Google Scholar 

  • Osborne, D. J., 1989, The control role of ethylene in plant growth and development, in:Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, H. Clijsters et al., eds., Kluwer Academic Publishers, pp. 1-11.

    Google Scholar 

  • Osborne, D. J., 1991, Ethylene in leaf ontogeny and abscission, in:The Plant Hormone Ethyelene, A. K. Matto and J. C. Suttle, eds., CRC Press, Boca Raton, FL, pp. 193-214..

    Google Scholar 

  • Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A., and Stange, L. M. C, 1996, Evidence for a non- ACC ethylene biosynthesis pathway in lower plants,Phytochem.42:51-60.

    Article  CAS  Google Scholar 

  • Owens, L. D., Lieberman, M., and Kunishi, A., 1971, Inhibition of ethylene production by rhizobitoxine,Plant Physiol. 48:1-4.

    Article  PubMed  CAS  Google Scholar 

  • Palavan, N., Goren, R., and Galston, A. W., 1984, Effects of some growth regulators on polyamine biosynthetic enzymes in etiolated pea seedlings, Plant Cell Physiol. 25:541-546.

    CAS  Google Scholar 

  • Park, K. Y., Drory, A., and Woodson, W. R., 1992, Molecular cloning of an 1-aminocyclopropane-l- carboxylate synthase from senescing carnation flower petals, Plant Mol. Biol. 18:377-386.

    Article  PubMed  CAS  Google Scholar 

  • Payton, S., Fray, R. G., Brown, S., and Grierson, D., 1996, Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission, Plant Molec. Biol. 31:1227-1231.

    Article  CAS  Google Scholar 

  • Peck, S. C, and Kende, H., 1995, Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas, Plant Mol. Biol. 28:293-301.

    Article  PubMed  CAS  Google Scholar 

  • Peiser, G. D., Wang, T. T., Hoffman, N. E., Yang, S. F., Liu, H. W., and Walsh, C. T., 1984, Formation of cyanide from carbon 1 of 1-aminocyclopropane-l-carboxylic acid during its conversion to ethylene, Proc. Natl Acad. Sci. USA 81:3059-3063.

    Article  PubMed  CAS  Google Scholar 

  • Peleman, J., Saito, K., Cottyn, B., Engler, G., Seurinck, J. V., an Montagu, M., and Inze, D., 1989, Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana, Gene 84:359-369.

    Article  PubMed  CAS  Google Scholar 

  • Penarruba, L., Aguilar, M., Margossian, L., and Fischer, R. L., 1992, An antisense gene stimulates ethylene hormone production during tomato fruit ripening, Plant Cell 4:681-687.

    Google Scholar 

  • Philosoph-Hadas, S., Meir, S., and Aharoni, N., 1985, Autoinhibition of ethylene production in tobacco leaf discs: Enhancement of 1-aminocyclopropane-l-carboxylic acid conjugation, Physiol. Plant. 63:431-437.

    Article  CAS  Google Scholar 

  • Philosoph-Hadas, S., Meir, S., Pesis, E., Reuveni, A., and Aharoni, N., 1989, Hormone-enhanced ethylene production in leaves, in: Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, H. Clijsters et al., eds., Kluwer Academic Publ., Netherlands, pp. 135-142.

    Google Scholar 

  • Pirrung, M. C, and Mcgeehan, G. M., 1986, Ethylene biosynthesis: 6. Synthesis and evaluation of methylaminocyclopropanecarboxylic acid. J. Org. Chem. 51:2103-2106.

    Article  CAS  Google Scholar 

  • Pirrung, M. C, Kaiser, L. M., and Chen, J., 1993, Purification and properties of the apple fruit ethylene-forming enzyme, Biochem. 32:7445-7450.

    Article  CAS  Google Scholar 

  • Pogson, B. J., Downs, C. G., and Davies, K. M., 1995, Differential expression of two 1-aminocyclopropanel- carboxylic acid oxidase genes in broccoli after harvest, Plant Physiol. 108:651-657.

    Article  PubMed  CAS  Google Scholar 

  • Porat, R., Borochov, A., Halevy, A. H., and O’Neill, S. D., 1994, Pollination-induced senescence of Phalanopsis petals. The wilting process, ethylene production and sensitivity to ethylene, Plant Growth Regul 15:129-136.

    Article  CAS  Google Scholar 

  • Prescott, A., 1993, A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet), J. Exp. Bot. 44:849-861.

    Article  CAS  Google Scholar 

  • Prescott, A. G., and John, P., 1996, Dioxygenases: Molecular structure and role in plant metabolism, Annu. Rev. Plant Physiol. Plant Mol Biol 47:245-271.

    Article  PubMed  CAS  Google Scholar 

  • Privalle, L. S., and Graham, J. S., 1987, Radiolabeling of a wound-inducible pyridoxal phosphate-utilizing enzyme: Evidence for its identification as ACC synthase, Arch. Biochem. Biophys. 253:333-340.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, A. C., 1980, Sequence of chloroplast degreening in calamondin fruit as influenced by ethylene and AgN03, Plant Physiol. 66:624-627.

    Article  PubMed  CAS  Google Scholar 

  • Ramalingham, K., Lee, K.-M., Woodward, R. W., Bleecker, A. B., and Kende, H., 1985, Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-l- carboxylate synthase, Proc. Natl Acad. Sci. USA 82:7820-7824.

    Article  Google Scholar 

  • Rando, R. R., 1974, Chemistry and enzymology of Kcat inhibitors, Science 185:320-324.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., and Beyer, E. M. Jr., 1989, Role of ethylene metabolism in Amaranthus retroflexus, Plant Physiol. 90:1-5.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W. E., and Horton, R. F., 1975, Rapid effects of indoleacetic acid and ethylene on the growth of intact pea roots, Plant Physiol. 55:443-447.

    Article  PubMed  CAS  Google Scholar 

  • Raz, V., and Fluhr, R., 1992, Calcium requirement for ethylene-dependent responses, Plant Cell 4:1123-1130.

    PubMed  CAS  Google Scholar 

  • Reid, M. S., 1995, Ethylene in plant growth, development and senescence, in: Plant Hormones, Physiology, Biochemistry and Molecular Biology, P. J. Davies, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 486-508.

    Google Scholar 

  • Riov, J. and Yang, S. F., 1989, Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean (Vigna radiata) cuttings, J. Plant Growth Regul. 8:131-141.

    Article  CAS  Google Scholar 

  • Riov, J., and Yang, S. F., 1982, Autoinhibition of ethylene production in citrus peel discs. Suppression of 1- aminocyclopropane-1-carboxylic acid synthesis, Plant Physiol 69:687-690.

    Article  PubMed  CAS  Google Scholar 

  • Riov, J., Monselise, S. P., and Kahan, R. S., 1969, Ethylene-controlled induction of phenylalanine ammonia- lyase in citrus fruit peel,, Plant Physiol. 44:631-635.

    Article  PubMed  CAS  Google Scholar 

  • Roach, P. L., Clifton, I. J., Fulop, V., Harlos, K., Barton, G. J., Hajdu, J., Andersson, 1, Schofield, C. J., and Baldwin, J. E., 1995, Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes, Nature 375:700-704.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D. R., Walker, M. A., Thompson, J. E., and Dumbroff, E. J., 1984, The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production, and polyamine levels in cut carnation flowers, Plant Cell Physiol. 25:315-322.

    CAS  Google Scholar 

  • Rodriguez, F. I., Esch, J. J., Hall, A., Binder, B. M, Schaller, G. E., and Bleecker, A. B., 1999, A copper factor for the ethylene receptor ETR1 from Arabidopsis, Science 283:996-998.

    Article  PubMed  CAS  Google Scholar 

  • Rombaldi, C, Petitprez, M., Cleyet-Marel, J. C, Rouge, P., Latche, A., Pech, J. C, and Lelievre, J. M., 1992, Immunocyclocalisation of ACC oxidase in tomato fruits, in: Cellular and Molecular Aspects of the Plant Hormone Ethylene, J. C. Pech, A. Latche, and C. Balague, eds., Kluwer Academic Publ, Dordrecht,Netherlands, pp. 96-97.

    Google Scholar 

  • Rottmann, W. E., Peter, G. F., Oeller, P. W. , Keller, J. A., Shen, N. F., Nagy, B. P., Taylor, L. P., Campell, A. D., and Theologis, A., 1991, 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by amulti-gene family whose transcription is induced during fruit and floral senescence, J. Mol Biol. 222:937-961.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H., Hua, J., Chen, Q., Chang, C, Medrano, L., Bleecker, A. B., and Meyerowitz, E. M., 1998, ETR2 is an ETRl- like gene involved in ethylene signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA 95:5912-5913.

    Article  Google Scholar 

  • Saltveit, M. E., Jr., and Dilley, D. R., 1978, Rapidly induced wound ethylene from excised segments of etiolated Pisum sativum L. cv. Alaska. II. Oxygen and temperature dependency. Plant Physiol. 61:675-679.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, I. O., Smith, A. R., and Hall, M. A., 1989, Ethylene metabolism in Pisum sativum L., Planta 179:104- 114.

    Article  CAS  Google Scholar 

  • Sanders, I. O., Ishizawa, K., Smith, A. R., and Hall, M. A., 1990, Ethylene binding and action in rice seedlings, Plant Cell Physiol. 31:1091-1099.

    CAS  Google Scholar 

  • Sato, T., and Theologis, A., 1989, Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants, Proc. Natl Acad. Sci. 86:6621-6625.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Oeller, P. W., and Theologis, A., 1991, The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita: Purification, properties, expression in Escherichia coli and primary structure determination by DNA sequence analysis, J. Biol. Chem. 266:3752-3759.

    PubMed  CAS  Google Scholar 

  • Satoh, S., and Esashi, Y., 1983, Alpha-aminoisobutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds, Phys. Plant. 57:521-526.

    Article  CAS  Google Scholar 

  • Satoh, S., and Esashi, Y., 1986, Inactivation of 1-aminocyclopropane-l-carboxylic acid synthase of etiolated mung bean hypocotyl segments by its substrate, S-adenosyl-L-methionine, Plant Cell Physiol. 27:285- 291.

    CAS  Google Scholar 

  • Satoh, S., and Yang, S. F., 1988, S-Adenosylmethionine-dependent inactivation and radiolabeling of 1- aminocyclopropane-1-carboxylate synthase isolated from tomato fruits, Plant Physiol. 88:109-114.

    Article  PubMed  CAS  Google Scholar 

  • . Satoh, S., and Yang, S. F., 1989, Specificity of S-adenosyl-L-methionine in the inactivation and labeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits, Arch. Biochem. Biophys.271: 107- 112.

    Article  PubMed  CAS  Google Scholar 

  • Schmerder, B., and Borriss, H., 1986, Induction of nitrate reductase by cytokinin and ethylene in Agrosemma githago L. embryos, Planta 169:589-593.

    Article  CAS  Google Scholar 

  • Serek, M, Reid, M. S., and Sisler, E. C, 1994, Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants, J. Amer. Soc. Hort. Sci. 119: 1230-1233.

    CAS  Google Scholar 

  • Shaw, J.-F., Chou, Y.-S., Chang, R. C, and Yang, S. F., 1996, Caracterization of the ferrous ion binding sites of apple 1-aminocyclopropane-1-carboxylate oxidase by site-directed mutagenesis, Biochem. Biophys. Res. Commun. 225:697-700.

    CAS  Google Scholar 

  • Shiomi, S., Nakamoto, J.-L, Yamamoto, M, Kubo, Y., Nakamura, R., and Inaba, A., 1999, Expression of ACC synthase and ACC oxidase genes in different tissues of immature and mature cucumber fruits, J. Japan. Soc. Hort. Sci. 68:830-832.

    Article  CAS  Google Scholar 

  • Sisler, E. C, 1977, Ethylene activity of some N-acceptor compounds, Tobacco Sci. 21:43-45.

    CAS  Google Scholar 

  • Sisler, E. C, 1979, Measurement of ethylene binding in plant tissue, Plant Physiol. 64:538-542.

    Article  PubMed  CAS  Google Scholar 

  • Sisler, E. C, 1980, Partial purification of an ethylene-binding component from plant tissue, Plant Physiol. 66:404-406.

    Article  PubMed  CAS  Google Scholar 

  • Sisler, E. C, 1982a, Ethylene binding in normal, rin and nor mutant tomatoes, J. Plant Growth Regul. 1:211-219.

    CAS  Google Scholar 

  • Sisler, E. C, 1982b, Ethylene-binding properties of a Triton X-100 extract of mung bean sprouts, J. Plant Growth Regul. 1:211-218.

    CAS  Google Scholar 

  • Sisler, E. C, 1991, Ethylene-binding components in plants, in: The Plant Hormone Ethylene, A. H. Mattoo and J. C. Suttle, eds., CRC Press, Inc., Boca Raton, FL, pp. 81-99.

    Google Scholar 

  • Sisler, E. C, and Goren, R., 1981, Ethylene binding-the basis for hormone action in plants? What’s New in Plant Physiol. 12:37-40.

    Google Scholar 

  • Sisler, E. C, and Yang, S. F., 1984, Anti-ethylene effects of cis-2-butene and cyclic olefins, Phytochem. 23:2765-2768.

    Article  CAS  Google Scholar 

  • Sisler, E. C, and Blankenship, S. M., 1993, Diazocyclopentadiene (DACP), a light sensitive reagent for the ethylene receptor in plants, Plant Growth Regul 12:125-132.

    Article  CAS  Google Scholar 

  • Sisler, E. C, Reid, M. S., and Yang, S. F., 1986, Effect of antagonists of ethylene action on binding of ethylene in cut carnations, Plant Growth Regulation 4:213-218.

    Article  CAS  Google Scholar 

  • Sitrit, Y., Riov, J., and Blumenfeld, A., 1986, Regulation of ethylene biosynthesis in avocado fruit during ripening, Plant Physiol 81:130-135.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. R., and Hall, M. A., 1984, Biosynthesis and metabolism of ethylene, in: The Biosynthesis and Metabolism of Plant Hormones, A. Crozier and J. H. Hillman, eds., Society for Experimental Biology Semianr 23, Cambridge University Press, New York, pp. 201-229.

    Google Scholar 

  • Smith, A. R., Evans, D. E., Smith, P. G., and Hall, M. A., 1985, Ethylene metabolism in Pisum sativum L. and Vicia faba L., in: Ethylene and Plant Development, J. A. Roberts and G. A. Tucker, eds., Butterworths, London, pp. 139-145.

    Google Scholar 

  • Smith, A. R., Robertson, D., Sanders, I. O., Williams, R. A. N., and Hall, M. A., 1987, Ethylene binding sites, in: Plant Hormone Receptors, D. Klambt, ed.. Springer-Verlag, Berlin, pp. 229-238.

    Chapter  Google Scholar 

  • Smith, C. I. S., Slater, A., and Grierson, D., 1986, Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35000, Planta 168:94-100.

    Article  CAS  Google Scholar 

  • Smith, J. J., and John, P., 1993, Maximizing the activity of the ethylene-forming enzyme, in: Cellular and Molecular Aspects of the Plant Hormone Ethylene, J. C. Pech, A. Latche, and C. Balague, eds., Kluwer, Dordrecht, pp. 33-38.

    Google Scholar 

  • Smith, J. J. V., erveridis, P., and John, P., 1992, Characterization of the ethylene-forming enzyme partially purified from melon, Phytochem. 31:1485-1494.

    Article  CAS  Google Scholar 

  • Smith, J. J., Zhang, Z. H., Schofield, C. J., John, P., and Baldwin, J. E., 1994, Inactivation of 1- aminocyclopropane-1-carboxylate (ACC) oxidase, J. Exp. Bot. 45:521-527.

    Article  CAS  Google Scholar 

  • Smith, M. A., Jacobsen, J. V. G., and Kende, H., 1987, Amylase activity and growth in internodes of deepwater rice, Planta 172:114-120.

    Article  CAS  Google Scholar 

  • Spanu, P., Reinhardt, D., and Boiler, T., 1991, Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes, EMBO J. 10:2007-2013.

    PubMed  CAS  Google Scholar 

  • Stacewicz-Sapuncakis, M, Marsh, H. V. Jr., . V., engris, J., Jennings, P. H., and Robinson, T., 1973, Participation of ethylene in common purslane repsonse to dicamba, Plant Physiol. 52:466-471.

    Article  PubMed  CAS  Google Scholar 

  • Stange, L. M. C., and Osborne, D. J., 1989, Contrary effects of ethylene and ACC on cell growth in the liverwort riella helicophylla, in: Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, H. Clijsters, deProft, M., Marcelle, R., and vanPoucke M., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 341 -348.

    Chapter  Google Scholar 

  • Stead, A. D. and Moore, K. G., 1983. Studies on flower longevity in Digitalis. The role of ethylene in corolla abscission. Planta 157:15-21.

    Article  CAS  Google Scholar 

  • Stella, L., Wouters, S., and Baldellon, F., 1996, Chemical and biochemical aspects of the biosynthesis of ethylene, a plant hormone, Bull. Soc. Chim. Fr. 133:441-455.

    CAS  Google Scholar 

  • Su, L. Y., Liu, Y., and Yang, S. F., 1985, Relationship between 1 -aminocyclopropane-carboxylate malonytransferase and D-amino acid malonyltransferase, Phytochem. 24:1141-1145.

    Article  CAS  Google Scholar 

  • Suttle, J. C., and Kende, H., 1980, Ethylene action and loss of membrane integrity during petal senescence in Tradescantia, Plant Physiol. 65:1067-1072.

    Article  CAS  Google Scholar 

  • Tan, T., and Bangerth, F., 2000, Regulation of ethylene, ACC, MACC production and ACC-oxidase activity at various stages of maturity of apple fruit and the effect of exogenous ethylene treatment, Gartenbauwissenschaft 65:121 -128.

    CAS  Google Scholar 

  • Tang, X., Gomes, A.M.T.R., Bhatia, A., and Woodson, W. R., 1994, Pistil specific and ethylene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in petunia flowers, Plant Cell 6:1227- 1239.

    PubMed  CAS  Google Scholar 

  • Tarun, A. S., Lee, J. S., and Theologis, A., 1995, Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: A key enzyme in ethylene biosynthesis, Proc. Natl. Acad. Sci. USA 95:9796-9801.

    Article  Google Scholar 

  • Theologis, A., 1998, Ethylene signalling: Redundant receptors all have their say, Curr. Biol. 8R:875-878.

    Article  Google Scholar 

  • Theologis, A., and Laties, G. G., 1982, Potentiating effect of pure oxygen on the enhancement of respiration in plant storage organs: A comparative study, Plant Physiol. 69:1031 -1035.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C. J. R., Smith, A. R., and Hall, M. A., 1984, The effect of solubilization on the character of an ethylene-binding site from Phaseolus vulgaris L. cotyledons, Planta 160:474-479.

    Article  CAS  Google Scholar 

  • Thomas, C. J. R., Smith, A. R., and Hall, M. A., 1985, Partial purification of an ethylene-binding site from haseolus vulgaris L. cotyledon, Planta 164:272-277.

    Article  CAS  Google Scholar 

  • Thomas, D., and Surdin-Kerjan, Y., 1991, The synthesis of the two S-adenosylmethionine synthetases is differently regulated in Saccharomyces cerevisiae, Mol. Gen. Genet. 226:224-232.

    Article  CAS  Google Scholar 

  • Thomas, R. J., Harrison, M. A., Taylor, J., and Kaufman, P. B., 1983, Endogenous auxin and ethylene in Pellia (Bryophyta), Plant Physiol. 73:395-397.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, D., and Klee, H. J., 1999, Differential expression of two novel members of the tomato ethylene- receptor family, Plant Physiol. 120:165-172.

    Article  PubMed  CAS  Google Scholar 

  • Tittle, F. L. , 1987, Auxin-stimulated ethylene production in fern gametophytes and sporophytes, Physiol. Plant. 70:499-502.

    Article  CAS  Google Scholar 

  • Van der Straeten, D., Djudzman, A., Van Caeneghem, W., Smalle, J., and Van Montagu, M., 1993, Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminoeyclopropane-l- carboxylic acid and ethylene and specifically affects the ethylene signal transduction pathway, Plant Physiol. 102:401-408.

    Google Scholar 

  • Van der Straeten, D., Van Wiemeersch, L., Goodman, H. M, and Van Montagu, M., 1990, Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato, Proc. Natl. Acad. Sci. 87:4859-4863.

    Article  PubMed  Google Scholar 

  • Vendrell, M., and McGlasson, W. B., 1971, Inhibition of ethylene production in banana fruit tissue by ethylene treatment, Aust. J. Biol. Sci. 24:885-895.

    CAS  Google Scholar 

  • Vera, P., and Conejero, V., 1989, The induction and accumulation of the pathogenesis-related P69 proteinase in tomato during Citrus exocortis viroid infection and in response to chemical treatments, Physiol. Mol. Plant Path. 34:323-334.

    Article  CAS  Google Scholar 

  • Ververidis, P., and John, P., 1991, Complete recovery in vitro of ethylene-forming enzyme activity, Phytochemistry 30:725-727.

    Article  CAS  Google Scholar 

  • Vioque, B., 1986, Ethylene biosynthesis in higher plants, Grasas Aceites 37:156-167.

    CAS  Google Scholar 

  • Vioque, B., and Castellano, J. M., 1994, Extraction and biochemical characterization of 1-aminocyclopropane- 1-carboxylic acid oxidase from pear, Physio. Plant. 90:334-338.

    Article  CAS  Google Scholar 

  • Vioque, B., and Castellano, J. M., 1998, In vivo and in vitro l-aminocyclopropane-1-carboxylic acid oxidase activity in pear fruit: Role of ascorbate and inactivation during catalysis, J. Agric. Food Chem. 46:1706- 1711.

    Article  CAS  Google Scholar 

  • Vogeli, U., Meins, F., Jr., and Boiler, T., 1988, Coordinated regulation of chitinase and β-l,3-glucanase in bean leaves, Planta 174:364-372.

    Article  Google Scholar 

  • Walters, J., and Osborne, D. J., 1979, Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum, Planta. 146:309-

    Article  CAS  Google Scholar 

  • Wang, H., and Woodson, W. R., 1992, Nucleotide sequence of a cDNA encoding the ethylene-forming enzymefrom petunia corollas, Plant Physiol. 100:535-536.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. Y., Adams, D. O., and Lieberman, M., 1982, Recycling of 5’-methylthioadenosine-ribose carbon atoms into methionine in tomato tissue in relation to ethylene production, Plant Physiol. 70:117-121.

    Article  PubMed  CAS  Google Scholar 

  • White, M. F., Vasquez, J., Yang, S. F., and Kirsch, J. F., 1994, Expression of apple 1-aminocyclopropane-l- carboxylate synthase in Escherichia coli; Kinetic characterization of wild-type and active-site mutant forms, Proc. Natl. Acad. Sci. USA 91:12428-12432.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, D. J., Smith, G. S., and Gardner, R. C., 1997, Expression of ethylene biosynthesis genes in Actinidia chinensis fruit. Plant Mol. Biol. 34:45-55.

    Article  PubMed  CAS  Google Scholar 

  • Wiesendanger, R., Martinoni, B., Boiler, T., and Arigoni, D., 1986, Biosynthesis of 1-aminocyclopropane-l- carboxylic acid: Steric course of the reaction at the C-4 position, Experientia 42:207-209.

    Article  CAS  Google Scholar 

  • Wilkinson, J. Q., Lanahan, M. B., Yen, H. C, Giovannoni, J. J., and Klee, H. J., 1995, An ethylene inducible component of signal transduction encoded by Never Ripe, Science 270:1807-1809.

    Article  PubMed  CAS  Google Scholar 

  • Woltering, E. J., and deVrije, T., 1995, Ethylene: A tiny molecule with great potential, BioEssays. 17:287-290.

    Article  CAS  Google Scholar 

  • Yamamoto, M., Miki, T., Ishii, Y., Fujinami, K., Yanagisawa, Y., Nakagawa, H., Ogura, N., Hirabayashi, T., and Sato, T., 1995, The synthesis of ethylene in melon fruit during the early stage of ripening, Plant Cell Physiol. 36:591-596.

    CAS  Google Scholar 

  • Yang, S. F. ,1974, The biochemistry of ethylene: Biogenesis and metabolism, in: The chemistry and Biochemistry of Plant Hormones, V. C. Sondheimer and E. Walton, eds., Recent Adv. Phytochem., 7:131- 178, Academic Press, NY.

    Google Scholar 

  • Yang, S. F., 1980, Regulation of ethylene biosynthesis, HortSci. 15:238-243.

    CAS  Google Scholar 

  • Yang, S. F., 1996, ACC synthase, the key enzyme in biosynthesis of the plant hormone ethylene: From enzymology to biotechnology, Proc. Czech-Taiwan (R.O.C.) Symp. Biotechnology, Prague, CzechRepublic, June 5-8, 1995, pp. 25-33.

    Google Scholar 

  • Yang, S. F., and Hoffman, N. E., 1984. Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. 35:155-189.

    Article  CAS  Google Scholar 

  • Yang, S. F., Yip, W. K., and Dong, J. G., 1990a, Mechanism and regulation of ethylene biosynthesis, in: Polyamines and Ethylene: Biochemistry, Physiology, and Interaction. H. E. Flores et al., eds., Amer. Soc. Plant Physiol., pp. 24-35.

    Google Scholar 

  • Yang, S. F., Yip, W. K., Satoh, S., Miyazaki, J. H., Jiao, X., Liu, Y., Su, L. Y., and Peiser, G. D., 1990b, Metabolic aspects of ethylene biosynthesis, in: Plant Growth Substances, R. P. Pharis and S. B. Road, eds.. Springer-Verlag, Berlin, pp. 291-299.

    Google Scholar 

  • Yip, W. K., Dong, J. G., Kenny, J. W., Thompson, G. A., and Yang, S. F., 1990, Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase, Proc. Natl. Acad. Sci. USA 87:7930-7934.

    Article  PubMed  CAS  Google Scholar 

  • Yip, W. K., Moore, T., and Yang, S. F., 1992, Differential accumulation of transcripts for tomato 1- aminocyclopropane-1-carboxylate synthase homologs under various conditions, Proc. Natl. Acad. Sci. USA 89:2475-2479.

    Article  PubMed  CAS  Google Scholar 

  • Yoshii, H., and Imaseki, H., 1981, Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscissic acid on endogenous levels of 1-aminocyclopropane-l-carboxylic acid (ACC) and ACC synthase, Plant Cell Physiol. 22:369-379.

    CAS  Google Scholar 

  • Yoshii, H., and Imaseki, H., 1982, Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene, Plant Cell Physiol. 23:639-649.

    CAS  Google Scholar 

  • Yu, Y. B., and Yang, S. F., 1979, Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion, Plant Physiol. 64:1074-1077.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y. B., Adams, D. O., and Yang, S. F., 1979, 1 -Aminocyclopropane-carboxylate synthase, a key enzyme in ethylene biosynthesis, Arch. Biochem. Biophys. 198:280-286.

    Article  PubMed  CAS  Google Scholar 

  • Yung, K. H., Yang, S. F., and Schlenk, F., 1982, Methionine synthesis from 5-methylthioribose in apple tissue, Biochem. Biophys. Res. Commun. 104:771-777.

    Article  PubMed  CAS  Google Scholar 

  • Zarembinski, T. I., and Theologis, A., 1994, Ethylene biosynthesis and action: A case of conservation, Plant Mol. Biol. 26:1579-1597.

    Article  PubMed  CAS  Google Scholar 

  • Zauberman, G. and Fuchs, Y., 1973, Ripening process in avocado stored in ethylene atmosphere in cold storage, J. Am. Soc. Hort. Sci. 98:477-480.

    CAS  Google Scholar 

  • Zeroni, M., Galil, J., and Ben-Yehoshua, S., 1976, Autoinhibition of ethylene formation in nonripening stages of the fruit of sycamore fig (Ficus sycomorus L.), Plant Physiol. 57:647-650.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Barlow, J. N., Baldwin, J. E., and Schofield, C. J., 1997, Metal catalyzed oxidation and mutagenesisstudies on the iron(ii) binding site of 1-aminocyclopropane-l-carboxylic oxidase, Biochem. 36:15999- 16007.

    Article  CAS  Google Scholar 

  • Zhou, D., Mattoo, A., and Tucker, M., 1996a, Molecular cloning of a tomato cDNA encoding an ethylene receptor, Plant Physiol. 110:1435-1436.

    Google Scholar 

  • Zhou, D., Kalaitzis, P., Mattoo, A. K., and Tucker, M. L., 1996b, The mRNA for an ethylene receptor in tomato is constitutively expressed in vegetative and reproductive tissues, Plant Molecu. Biol. 30:131-133.

    Google Scholar 

  • Zhou, H., Huxtable, S., Xin, H., and Li, N., 1998, Enhanced high-level expression of soluble 1- aminocyclopropane-1 -carboxylase synthase and rapid purification by expanded bed adsorption, Protein Expression Purification 14:178-184.

    Article  PubMed  Google Scholar 

  • Zimmerman, P. W., and Hitchcock, A. E., 1933, Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases, Contrib. Boyce Thompson Inst. 5:351-369.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (2002). Ethylene in Plant Physiology. In: Ethylene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0675-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0675-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5189-4

  • Online ISBN: 978-1-4615-0675-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics